

Blue Pelican GridWorld

Teacher Manual

AP Computer Science
Case Study

Copyright ©, 2007 by Charles Cook;
Refugio, Tx

(all rights reserved)

Table of contents

Chapters Page

Getting Started Chapter 1-1
Download and install Chapter 1-1
BugRunner project Chapter 1-2

BoxBug & SpiralBug Chapter 2-1
BoxBug Chapter 2-1
SpiralBug Chapter 2-4

The Location Class Chapter 3-1
ZorroBug Chapter 3-4

The Grid Interface Chapter 4-1
The Actor Class Chapter 5-1

BugBeGone Chapter 5-6
JumpingBug Chapter 5-6

The Critter Class Chapter 6-1
Extending the Critter Class Chapter 7-1

ChameleonCritter Chapter 7-1
CrabCritter Chapter 7-3

Grid Data Structures Chapter 8-1
AbstractGrid Chapter 8-1
BoundedGrid Chapter 8-2
UnboundedGrid Chapter 8-3

Appendices

Appendix A… Location Class Appendix A-1
Appendix B… Grid Interface Appendix B-1
Appendix C… Actor, Rock, Flower Appendix C-1

Rock Appendix C-1
Flower Appendix C-2

Appendix D… Bug, BoxBug Appendix D-1
Bug Appendix D-1
BoxBug Appendix D-3

Appendix E… Critter, ChameleonCritter Appendix E-1
Critter Appendix E-1
Chameleon Appendix E-3

Appendix F… Grid Structures Appendix F-1
AbstractGrid Appendix F-1
BoundedGrid Appendix F-2
UnboundedGrid Appendix F-4

Appendix G… Quick Reference, A/AB Appendix G-1
Appendix H… Quick Reference, AB Only Appendix H-1

Chapter 2-1

Chapter 2--BoxBug & SpiralBug

Modifying the methods of Bug

The Bug class is a very fundamental part of GridWorld. It should not be modified;
rather, a new class is created extending the Bug class, and modifications are made in it
by overriding the methods in the Bug superclass. One method that is very commonly
overridden is the act() method.

Cleaning up our act()
Recall from the last chapter (Getting Started), the Step button on the graphical interface
to GridWorld. Each time it is clicked (and also on each iteration of Run), the act method
of each object in the Grid is called. Below is the source code for the act method of the
Bug class:

public void act()
{
 if(canMove())
 move();
 else
 turn();
}

Notice how very simple this method is. It, in turn, uses three other methods of the Bug
class:

• canMove() … returns a boolean telling if it’s safe to move in the direction set for
this object.

• move() …move one space to the nearest of this object’s direction to horizontal,
vertical, or at a 45 degree diagonal.

• turn() …sets a new direction of 45 degrees clockwise from the current direction.

Notice that this code explains why when a Bug wants to move into the position of a Rock,
another Bug, or is trying to move off the grid, it turns, instead. Also notice that with just a
few changes, this is very fertile ground for modifying the behavior of the Bug.

BoxBug
The Bug class will now be extended to produce the BoxBug class. As its name suggests,
BoxBug will travel in the shape of a box (square). The BoxBug will move along in its
initial direction for a distance specified by the state variable (instance field) sideLength. It
will then turn 90 clockwise and continue doing this unless it encounters an obstacle in
which case it also turns 90 degrees clockwise and begins a new box.

Fig 2-1. When testing the BoxBug class, the graphics should
produce something like this for each BoxBug object on the
Grid.

Chapter 2-2

It has already been suggested that we will have an integer state variable called sideLength
that determines the lengths of the sides of the square traced out by BoxBug. A good
feature for this new class to have would be for its constructor to initialize sideLength as
follows:

public BoxBug(int length)
{
 sideLength = length;
 steps = 0;
}

Notice that there is now evidence of a second state variable, int steps. For the sake
of knowing when to turn 90 degrees, this variable keeps a tally of how many steps
through which the BoxBug has progressed. Also, notice that this constructor
specifies how BoxBug objects should be created:

BoxBug myBoxBug = new BoxBug(len); //int len specifies side length

So far, the new BoxBug class appears as follows (notice extends Bug):

import info.gridworld.actor.Bug;

public class BoxBug extends Bug
{
 //state variables

private int sideLength;
private int steps;

//constructor
public BoxBug(int length)
{
 sideLength = length;
 steps = 0;
}

//…more code to come…

 }

Finally, and most important of all, a modified act method must be provided that
overrides the act method of the Bug superclass. The requirements are that it keeps
up with how far the BoxBug has moved and then turns it 90 degrees clockwise.

Project… BoxBug

As a project, complete the BoxBug class by providing code for the act method so that the
behavior of BoxBug is as described: after turning 90 degrees be sure to reset steps to 0 so
the count can start over. To test this class, see the next section titled, Testing with a new
Runner class.

Chapter 2-3

Testing with a new Runner class
(This discussion applies to testing a BoxBug class. A Runner class could be
similarly created for any other modified type of Bug.)

Now that a BoxBug class has been created, how is it to be tested? First, create a
new project: call it BoxBug and create the BoxBug class within it. The actual
visual testing must be done with a BoxBugRunner class. This is not an AP tested
class, but is necessary for the testing of BoxBug and to see it perform. Enter a
second class into the project called BoxBugRunner as follows:

import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import java.awt.Color;

public class BoxBugRunner
{

public static void main(String args[])
{

ActorWorld world = new ActorWorld();
BoxBug bug1 = new BoxBug(6); //side of box = 6
bug1.setColor(Color.ORANGE);

BoxBug bug2 = new BoxBug(3); //side of box = 3
bug2.setColor(Color.GREEN);

world.add (new Location(7, 8), bug1);
world.add (new Location(7, 5), bug2);
world.show();

}
}

Again this code is not part of the AP test. This is just a class we need to provide
in order to test our BoxBug class with a graphical interface. One thing is;
however, of importance if we wish to create other extensions of the Bug class. If
for example, a spiral bug is created with a SpiralBug class, then the following two
lines of code would replace the corresponding two lines in the BoxBugRunner
class:

SpiralBug bug1 = new SpiralBug(6);
SpiralBug bug2 = new SpiralBug(6);

This new class could be called the SpiralBugRunner class.

It should be noted that this runner class (either BoxBugRunner or
SpiralBugRunner) will not compile unless the class (BoxBug or SpiralBug), upon
which it is dependent, has already been compiled.

Chapter 2-4

Project… SpiralBug

As a project, create a SpiralBug class by providing code for the act method so that it
moves in a spiral. A key feature is to use most of the BoxBug class and increase the value
of sideLength at the end of each turn. To test this class, see the previous section titled,
Testing with a new Runner class. When testing, set an unbounded grid.

Fig 2-1. When testing the SpiralBug class, the
graphics should produce something like this
for each SpiralBug object on the grid

Chapter 2-5

Project Key… BoxBug

The complete class for BoxBug:

import info.gridworld.actor.Bug;

public class BoxBug extends Bug
{
 //state variables

private int sideLength;
private int steps;

//constructor
public BoxBug(int length)
{
 sideLength = length;
 steps = 0;
}

public void act()
{

if((steps < sideLength) && (canMove()))
{
 move();

steps++;
}
else
{

turn();
turn();
steps = 0;

}
}

 }

The official code for this class from the College Board is in Appendix D. The code for
the superclass, Bug, is also given in Appendix D.

Project Key… SpiralBug

The complete class for SpiralBug:

import info.gridworld.actor.Bug;
public class SpiralBug extends Bug
{
 //state variables

private int sideLength;
private int steps;

Chapter 2-6

//constructor
public SpiralBug(int length)
{
 sideLength = length;
 steps = 0;
}

public void act()
{

if((steps < sideLength) && (canMove()))
{
 move();

steps++;
}
else
{

turn();
turn();
steps = 0;
sideLength++;

}
}

 }

The complete class for SpiralBugRunner:

import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import java.awt.Color;
public class SpiralBugRunner
{

 public static void main(String args[])
 {

 ActorWorld world = new ActorWorld();
 SpiralBug bug1 = new SpiralBug(6); //side of box = 6
 bug1.setColor(Color.ORANGE);

 world.add (new Location(7, 8), bug1);
 world.show();

 }
}

	Cover
	Table of Contents
	Chapter 1... Getting Started
	BugRunner
	Exercise, Chapter 1
	Exercise Key, Chapter 1

	Chapter 2... BoxBug & Spiral Bug
	Project... BoxBug
	Project... SpiralBug
	Project Key... BoxBug
	Project Key... SpiralBug

	Chapter 3... The Location Class
	Exercises, Chapter 3
	Project... the compareTo method
	Project... ZorroBug
	Exercise Key, Chapter 3
	Project Key... the compareTo method
	Project Key... ZorroBug

	Chapter 4... The Grid Interface
	Exercise, Chapter 4
	Project... creation of getEmptyAdjacentLocations
	Exercise Key, Chapter 4
	Project Key... creation of getEmptyAdjacentLocations

	Chapter 5... The Actor Class
	Exercise A, Chapter 5
	Exercise B, Chapter 5
	Project... BugBeGone
	Project... JumpingBug
	Exercise A Key, Chapter 5
	Exercise B Key, Chapter 5
	Project Key... BugBeGone
	Project Key... JumpingBug

	Chapter 6... The Critter Class
	Exercise, Chapter 6
	Exercise Key, Chapter 6

	Chapter 7... Extending the Critter Class
	Project... ChameleonCritter
	Exercise A, Chapter 7 (ChameleonCritter)
	Project... CrabCritter
	Exercise B, Chapter 7 (CrabCritter)
	Project Key... ChameleonCritter
	Exercise A, Key, Chapter 7 (ChameleonCritter)
	Project Key... CrabCritter
	Exercise B key, Chapter 7 (CrabCritter)

	Chapter 8... Grid Data Structures
	AbstractGrid
	Exercise A, Chapter 8 (AbstractGrid)
	BoundedGrid
	Exercise B, Chapter 8 (BoundedGrid)
	UnboundedGrid
	Exercise C, Chapter C (UnboundedGrid)
	Exercise A Key, Chapter 8 (AbstractGrid)
	Exercise B Key, Chapter 8 (BoundedGrid)
	Exercise C Key Chapter 8 (UnboundedGrid)

	Appendices
	Appendix A... Location Class
	Appendix B... Grid Interface
	Appendix C... Actor, Rock, Flower
	Actor
	Rock
	Flower

	Appendix D... Bug, BoxBug
	Bug
	BoxBug

	Appendix E... Critter, ChameleonCritter
	Appendix... Grid Structures
	AbstractGrid
	BoundedGrid
	UnboundedGrid

	Appendix G... Quick Reference, A/AB
	Appendix H... Quick Reference, AB Only

