

Blue Pelican Java

by Charles E. Cook

Version 7.0.1A

Copyright © 2004 - 2013 by Charles E. Cook; Refugio, Tx

(All rights reserved)

1-1

“Blue Pelican Java,” by Charles E. Cook. ISBN 1-58939-758-4.

Published 2005 by Virtualbookworm.com Publishing Inc., P.O. Box 9949, College Station,
Tx 77842, US. ©2005, Charles E. Cook. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, recording or otherwise, without the prior written permission
of Charles E. Cook.

Manufactured in the United States of America.

Preface

You will find this book to be somewhat unusual. Most computer science texts will begin
with a section on the history of computers and then with a flurry of definitions that are
just “so many words” to the average student. My approach with Blue Pelican Java is to
first give the student some experience upon which to hang the definitions that come later,
and consequently, make them more meaningful.

This book does have a history section in Appendix S and plenty of definitions later when
the student is ready for them. If you will look at Lesson 1, you will see that we go right to
work and write a program the very first day. The student will not understand several
things about that first program, yet he can immediately make the computer do something
useful. This work ethic is typical of the remainder of the book. Rest assured that full
understanding comes in time. Abraham Lincoln himself subscribed to this philosophy
when he said, “Stop petting the mule, and load the wagon.”

The usual practice in most Java textbooks of introducing classes and objects alongside
the fundamental concepts of primitive variable types, loops, decision structures, etc. is
deferred until the student has a firm grasp of the fundamentals. Thus, the student is not
overwhelmed by simultaneous introduction of OOPs (Object Oriented Programming)
and the fundamentals. Once introduced, (Lesson 15), OOPs is heavily emphasized for the
remainder of the book.

I fully realize that there are those who disagree with this idea of deferring the
introduction of OOPs, and from their own point of view, they are right. In most cases
they teach only the very highest achieving, mature students. In those cases, I agree that it
is acceptable to begin with OOPs; however, for the average student and especially for
younger high school students, I feel that they need to understand the fundamentals first.

Upon first examination of this book it may not appear to be very “robust” in that there is
not great depth for some of the topics. Actually the depth is there,… in the Appendix.
The Appendix for this book is unusually large. Here is why the book is organized this
way:

• The lessons are kept purposely short so as to hold down the intimidation factor.
As a result, the lessons should look “doable” to the students.

• The in-depth material is placed in the Appendices, and references to the
Appendices are made in the lessons. As an example, in Lesson 18 the split method
is introduced. The split method uses regular expressions that are briefly discussed
there; however, the in-depth presentation of regular expressions is placed in
Appendix AC.

Unfortunately, this book does not introduce any graphics or windows programming. The
57 lessons in this book can be covered in one school year, but just barely. To prepare
students for the AP test (and contests) there is only time to cover the essentials presented
in this book. Check http://www.bluepelicanjava.com for the availability of study
materials for the current AP case study, updates on this book, videos for each lesson, and
an inexpensive way to purchase hard-cover books.

I am often asked how to use this book. “Which lessons are really important and which
can be skipped?” The answer is simple:

• Start on Lesson 1.
• Proceed at a reasonable rate. (See Appendix P for a time-line.)
• Don’t skip anything (except for, perhaps Lesson 47 and Lesson 53)
• Give a simple, confidence-building quiz on each lesson. Quizzes and keys are

provided in the Answer Book (available at www.bluepelicanjava.com).
• Make sure the students do the provided exercises and projects.
• Give tests at regular intervals. Tests and keys are provided in the Answer Book.

In this book you will also notice another part of my philosophy of teaching and
educational material in general…Keep it simple… I try to keep things as simple and
uncluttered as possible. For example, you will find specific examples in greater numbers
than long-winded explanations in this book. You won’t find many pictures and sidebars
and lots of little colored side notes scattered about. Some of that type format does contain
some useful information; however, I feel that it is largely distracting. Apparently more
and more people are coming around to my way of thinking on this, and here is why I
think so. Recall that just a few years ago that nearly all web pages looked like cobbled
together ransom notes with just a profusion of colors, links, and tidbits scattered all over
the page. Take a look at professional web pages today. They typically have a very neat,
clean appearance…often with just a plain white background and with plenty of space
between the various elements. This is good. Simple is better.

Since this textbook has a strong emphasis on preparation for the AP test and competition
(computer science contests), special “contest type” problems are provided at the end of
most lessons. I realize that most students will not compete and some may not even take
the AP exam; however, the material is not wasted on them. Those “contest type”
problems are good for the average student too, as long as they are not overwhelmed with
too many problems at one sitting. Hopefully, I have just the optimum number of these
type problems on each lesson and students won’t be burned-out by too much of a good
thing.

Finally, we come to the reason for the choice of Blue Pelican Java as a name for this
book. One of the early (and free) java IDE’s available for students was BlueJ and it was
the first my students used. I always thought BlueJ was an elegant name and had
expressed a desire to a colleague to continue the tradition by naming the book after some
other blue-colored bird. He jokingly suggested Blue Pelican, not really being serious
about naming a book after this rather ungainly, clunky bird. For the lack of an existing
name for the book during development, it continued to be called Blue Pelican. If you call
something by a particular name long enough, that’s its name, and so the name stuck.

I truly hope Blue Pelican Java is useful to you and that you find the experience of
learning to program a rewarding one. Just remember, few things worthwhile are acquired
without some sacrifice. The “sacrifice” here will be the time you invest in creating
programs and trying the code suggested in these pages.

Charles E. Cook

Table of Contents - 1

Table of Contents

Some of the numbered lessons below are marked with an asterisk (*). This indicates they are
subjects not covered by the AP A test. All other lessons have at least “potential relevance”.

Lesson Title Description Page

1 Hello World Simple use of println, rems, remarks, comments,
block rems. Project… From Me to You

1-1

2 Variable Types String, int, double, legal names, illegal names,
declaring, initializing

2-1

3 Simple String Operations Concatenation, length, substring, toLowerCase,
toUpperCase, escape sequences, backslash
Project… Name That Celebrity

3-1

4 Using Numeric variables Assignment, ++, --, modulus, +=, -=, /=, *=,
PEMDAS, increment, decrement, multiple
declarations, remainder, compound operator, round-
off. Project…Cheating on Your Arithmetic
Assignment

4-1

5 Mixed Data Types, Casting, and
Constants

final, mixed arithmetic, casting. Project… Mixed
Results

5-1

6 Math Class Methods abs, pow, sqrt, ceil, floor, log, min, max, round, PI,
sin, cos, tan, asin, acos, atan, toDegrees, toRadians.
Project… Compute This

6-1

7 *Input from the Keyboard Scanner class, nextInt, nextDouble, next, nextLine,
Project… Going in Circles, Project… What’s My
Name?

7-1

8 boolean Type and Operators AND, OR, NOT, precedence 8-1
9 “if” statement equals, equalsIgnoreCase. Project…Even or Odd? 9-1

10 The “switch” Statement and char switch, default, break, char. Project… Weight on
Other Planets

10-1

11 The “for” Loop Initializing, control, and step expressions. break,
infinite loops, scope, for-loop project, Project…
Name Reversal

11-1

12 while and do-while loops Testing at top and bottom of loop, break, continue 12-1
13 ASCII and more on char ASCII codes for numbers and letters, conversion

from String to char, conversion from char to String,
isDigit, is Letter, isLetterOrDigit, isLowerCase,
isUpperCase

13-1

14 Binary, Hex, and Octal Conversion between number systems, binary
addition. Project… Basically Speaking

14-1

15 Classes and Objects Instantiate, methods, state variables, constructor,
signature, public, void, Project… What’s That
Diameter? Project… Overdrawn at the Bank

15-1

16 More on Classes & Objects Private methods and state variables, different lines to
declare and instantiate, setting objects equal, equality
of objects, reassignment of objects, Project… Gas
Mileage

16-1

17 Advanced String Methods compareTo, indexOf(), lastIndexOf(), charAt(),
replace(), trim, Scanner, reg expr. Project… Add
‘em Up, Project… Encryption / Decryption

17-1

Table of Contents - 2

18

Arrays

Declaring and initializing, length, parallel arrays,
Out-of-bounds exception, passing an array to a
method, automatic initialization, split, reg expr.
Project… Array of Hope

18-1

19 Advanced Array Concepts Arrays of objects, comparison of array values, null
pointer exception, different reference to same array,
arraycopy, toCharArray, logical vs physical size,
Arrays class, sort, binarySearch, equals, fill,
importing, command line arguments, enhanced for-
loop. Project… Sorting a String Array. Project…
Two Orders for the Price of One

19-1

20 Static Methods and State
Variables

Class methods and variables, static constants static
imports. Project… How Far To The Line?

20-1

21 Wrapper Classes Converting primitives to objects and vice versa 21-1
22 More on Wrapper Classes parseInt, parseDouble, toHexString, toOctalString,

toBinaryString, toString, valueOf
22-1

23 *Input from a Disk File Scanner, File, throws IOException, readLine, Project
for Reading Files, close, Project… Reading Files

23-1

24 *Processing File Input with
Scanner

Processing text coded numbers, using parseInt and
parseDouble, parsing and manipulating text,
Project… Get Rid of That Plus Sign!, Project…
Student Averages

24-1

25 *Writing to a Text File FileWriter, PrintWriter, print, println, appending to
the end of a file, close, Project… Write Student
Averages

25-1

26 *Formatting (rounding off) NumberFormat, formatting numbers, currency, and
percent, Formatter class, printf. Project…
BaseClass. Project… Gymnastics

26-1

27 *Bitwise operators Bitwise-AND, OR, exclusive-OR, and NOT.
Negative numbers, sign bit, msb, most significant bit

27-1

28 *Advanced Bitwise Operations Shift left and right, <<, >>, >>>, preservation of
sign, short-circuit, precedence. Negative numbers,
sign bit, msb, most significant bit. Project…
Tweaking for Speed

28-1

29 *Random Numbers nextDouble, nextInt, Monte Carlo, simulations,
Project… Monte Carlo Technique

29-1

30 *StringBuffer Class append, toString, substring, length, setCharAt,
delete, deleteCharAt, insert, charAt. Project…
Concatenations Gone Wild

30-1

31 *Boolean Algebra and
DeMorgan’s Theorem

OR, AND, truth table 31-1

32 *Selection Operator ?: syntax 32-1
33 Passing by Value and by

Reference
Arrays, primitives, objects, references. Project…
Pass the Gravy, Please

33-1

34 Two-Dimensional Arrays Subscripted variables, matrix, initializing, Arrays
class. Project… Matrix Multiplication, Project…
Matrix Multiplication with File Input

34-1

35 Inheritance Superclass, subclass, base class, derived class,
abstract, final, overriding, shadowing, cosmic
superclass, instanceof, Object, this, super

35-1

Table of Contents - 3

36

Exceptions

Checked, unchecked, try, catch, finally, throw,
throws, Project… Keep Trying

36-1

37 Interfaces Implementation perspective,objective perspective,
instanceof, polymorphism, realizes,
implements.,Project… Linear Function

37-1

38 *Complexity Analysis (Big O) sequential search, binary search 38-1
39 Recursion Factorial, Fibonacci series, Project… Fibonacci 39-1
40 Sorting Routines selection, insertion, quick, & merge sorts, partition,

big O chart, Project… Multiple Key Sorting
40-1

41 List Interface ArrayList, LinkedList, Vector 41-1
42 ArrayList advantages, disadvantages, Project… Big Bucks in

the Bank
42-1

43 *Iterator/ListIterator stepping through a list, Project… Big Bucks
Revisited

43-1

44 Comparable/Comparator compare objects, compare, compareTo, Project…
Sorting BankAccount Objects, Project…Sorting
BankAccount Objects Alphabetically, Project…
Sorting BankAccount Objects using a Comprator

44-1

45 *HashSet/TreeSet Set interface, Iterators, Project… HashSet/
Intersection, Project… HashSet/Union

45-1

46 *HashMap/TreeMap Keys, values, Map interface, iterator, Project…
Mapping Bank Accounts, Project…Code Talker,
Project…Histogram, Project…Student
Classification

46-1

47 *Flow Charts & Optimizing for
Speed

Writing code for a flow chart. Project… Divisors of
a Number, Project… Optimized Code for
Divisors, Project… Super Optimized Code for
Divisors, Speed tricks

47-1

48 *Singly Linked List Example list of pipeline nodes. Project… insert
Method for Singly Linked List

48-1

49 *The LinkedList Class (doubly
linked) and Stacks

Methods of the LinkedList class used to implement a
Stack class (push, pop, etc). Queues. Project…
StackLL Class. Project… Stack Calculator

49-1

50 Binary Search Binary search of primitive arrays & object arrays,
recursive search . Arrays.sort, Arrays.binarySearch.
Project…Binary Search, Reverse Order;
Project… Binary Search with Objects

50-1

51 *Binary Search Trees Binary search trees. Preorder, inorder, postorder, and
in level traversals. Expression trees. Project… BST
find Method

51-1

52 *Queues LinkedListQueue, ArrayListQueue. Project…
Who’s Next?, Project.… Shifting Marquee

52-1

53 *Inner Classes Project… Inner Class inside Outer Class,
Project… Inner Class Inside Method

53-1

54 *Heaps Complete and full trees, adding and deleting nodes.
Project… Printing a Heap, …A Heap of Trouble

54-1

55 *Priority Queues Heap based priority queue, array implementation.
Project… Who Has Highest Priority?, Project…
Smile for the Camera

55-1

Table of Contents - 4

56 *Lookup Tables and Hashing Lookup tables, hashing techniques, collisions,
chaining, probing load factor, and Object class
methods. Project… A Taste of Hash; Project…
Hashing Abraham Lincoln

56-1

Case Study… A major project… Distance to a Meandering Trail CS1-1

Golden Nuggets of Wisdom are short learning/review activities. In the six weeks preceding an AP
exam, contest, or other major evaluation, study one of these each day. Follow up with a quiz
(provided in the Teacher’s Test/Answer Book) on that topic the next day.

#1 Golden Nugget of Wisdom #1 loop variable after exiting loop Ng1
#2 Golden Nugget of Wisdom #2 overriding, overloading, polymorphism Ng2
#3 Golden Nugget of Wisdom #3 implements, realizes, log, exclusive or Ng3
#4 Golden Nugget of Wisdom #4 charAt, special feature of substring Ng4
#5 Golden Nugget of Wisdom #5 masking Ng5
#6 Golden Nugget of Wisdom #6 implementing an interface, converting decimal

number to binary, hex, an octal
Ng6

#7 Golden Nugget of Wisdom #7 StringBuffer insert,alph order, simultaneously adding
and concatenating

Ng7

#8 Golden Nugget of Wisdom #8 escape characters, null, continue, break, selection Ng8
#9 Golden Nugget of Wisdom #9 operator (?:), bitwise not, modulus with fractions Ng9

#10 Golden Nugget of Wisdom #10 final, arraycopy, calling a different constructor Ng10
#11 Golden Nugget of Wisdom #11 LIFO, FIFO, bitwise ANDing and ORing of

booleans, modulus with negative numbers
Ng11

#12 Golden Nugget of Wisdom #12 casting, incompatible object comparison, access
control modifier

Ng12

#13 Golden Nugget of Wisdom #13 mixed arithmetic, declaring an array of objects Ng13
#14 Golden Nugget of Wisdom #14 equality between Wrapper class objects, hex, binary,

octal, exclusive or
Ng14

#15 Golden Nugget of Wisdom #15 short circuiting, valueOf, converting numerics to
Strings

Ng15

#16 Golden Nugget of Wisdom #16 Order within method signature, String replace,
nextToken delimiter

Ng16

#17 Golden Nugget of Wisdom #17 indexOf, different references to same array, setting
arrays and other objects equal to null

Ng17

#18 Golden Nugget of Wisdom #18 subclass method overriding superclass method,
equivalence of methods and function, equivalence of
signatures and headers

Ng18

#19 Golden Nugget of Wisdom #19 multiple constructors Ng19
#20 Golden Nugget of Wisdom #20 initialization blocks Ng20
#21 Golden Nugget of Wisdom #21 initializing numeric state and method variables Ng21
#22 Golden Nugget of Wisdom #22 prototype, short-circuiting, isLetter (etc) Ng22
#23 Golden Nugget of Wisdom #23 char & int, ASCII, casting, XOR Ng23
#24 Golden Nugget of Wisdom #24 boolean simplification, law of absorption, printing 2-

D arrays.
Ng24

#25 Golden Nugget of Wisdom #25 random numbers, maps, sets, keyset

Ng25

Table of Contents - 5

#26 Golden Nugget of Wisdom #26 recursion Ng26
#27 Golden Nugget of Wisdom #27 Big O, floor, ceil, round Ng27
#28 Golden Nugget of Wisdom #28 split method Ng28
#29 Golden Nugget of Wisdom #29 Iterator, ListIterator, exceptions, abstract, final Ng29
#30 Golden Nugget of Wisdom #30 Static methods and variables, NumberFormat,

ListIterator interface
Ng30

Appendix
A

Key Words Reserved words that are part of Java A-1

Appendix
B

Escape Sequences \b \t \n \” \’ \\ A-1

Appendix
C

Primitive Data Types byte, short, int, long, float, double, char, boolean C-1

Appendix
D

ASCII Codes Decimal, hex, octal, and html equivalents D-1

Appendix
E

Saving Text Files Windows settings, Notepad, WordPad E-1

Appendix
F

Text and Binary Files Explained Storage methods F-1

Appendix
G

Two’s Complement Notation Negative numbers, invert, ones’ compliment, ten’s
complement, odometer, msb, sign bit

G-1

Appendix
H

Operator Precedence Order of operations H-1

Appendix
I

Creating Packages and
Importing Classes

Importing, package, wildcard, 6steps to create a
package, classpath variable

I-1

Appendix
J

Typical Contest Classes and
Interfaces

Scope of UIL contest J-1

Appendix
K

Exception Classes A list of some checked and unchecked exceptions K-1

Appendix
L

An Essay on Interfaces Down to earth explanation of Interfaces L-1

Appendix
M

Input from the Keyboard BufferedReader, InputStreamReader. M-1

Appendix
N

Using the BlueJ Programming
Environment

Creation of projects and classes N-1

Appendix
O

Using the JCreator Programming
Environment

Creation of projects and classes O-1

Appendix
P

Time Allocation for Lessons Time allocation for each lesson P-1

Appendix
Q

AP(A) Correlation Page number correlation Q-1

Appendix
R

Texas TEKS/TAKS Correlation Page number correlation to TEKS R-1

Appendix
S

History of Computers Pascal, Babbage, ENIAC, operating systems, MITS
Altair, TRS 80, Apple, IBM pc, disk storage, key
punch cards

S-1

Appendix
T

Viruses What a virus is, how they are spread, types,
protection, ethics, and etiquette

T-1

Table of Contents - 6

Appendix
U

Enrichment Activities Use of LANs and WANs, Using a scanner and OCR
software, Software specifications, Publish
Information, Electronic communities

U-1

Appendix
V

Computer Languages Java, Visual Basic, Java Script, Assembly language,
Machine code, Compiled vs Interpreted languages

V-1

Appendix
W

Binary Tree Terms Definitions of terms related to binary trees. W-1

Appendix
X

Compiling and Executing
without and IDE

Using javac.exe, java.exe, and javaw.exe.
Compiling and executing, DOS prompt, Path
Variable

X-1

Appendix
Y

Kilobytes, Megabytes,
Gigabytes

Tables with exact values “power of two” equivalents Y-1

Appendix
Z

The DecimalFormat Class Formatting numbers, currency, and percents with
patterns

Z-1

Appendix
AA

Matrix Multiplication Matrix multiplication explained in detail AA-1

Appendix
AB

Monospaced Fonts Vertical alignment of printout AB-1

Appendix
AC

Regular Expressions A discussion on how to build and interpret regular
expressions. Additional methods of the String class;
split, replaceAll, replaceFirst

AC-1

Appendix
AD

Formatter class specifiers and
flags

Format specifiers, format flags AD-1

Appendix
AE

Appendix

AF

Appendix
AG

javaDoc

Generic Classes

Pattern and Matcher classes

The javDoc technique for generating web based
documentation.

Creation of generic classes

Discussion and examples of the methods of the
Pattern and Matcher classes.

AE-1

AF-1

AG-1

Index Indx-
1

11-1

Lesson 11…..The for-Loop

One of the most important structures in Java is the “for-loop”. A loop is basically a block of code
that is repeated with certain rules about how to start and how to end the process.

Simple example:

Suppose we want to sum up all the integers from 3 to 79. One of the statements that will
help us do this is:

 sum = sum + j;

However, this only works if we repeatedly execute this line of code, …first with j = 3,
then with j = 4, j = 5, …and finally with j = 79. The full structure of the for-loop that
will do this is:

 int j = 0, sum = 0;
 for (j = 3; j <= 79; j++)
 {

sum = sum + j;
System.out.println(sum); //Show the progress as we iterate thru the loop.

 }

 System.out.println(“The final sum is ” + sum); // prints 3157

Three major parts:

Now let’s examine the three parts in the parenthesis of the for-loop.

Initializing expression….j = 3 If we had wanted to start summing at 19, this part
would have read, j = 19.

Control expression….j <= 79 We continue looping as long as this boolean
expression is true. In general this expression can be any boolean expression. For
example, it could be:

count = = 3 s + 1 < alphB s > m +19 etc.

Warning: There is something really bad that can happen here. You must write
your code so as to insure that this control statement will eventually become false,
thus causing the loop to terminate. Otherwise you will have an endless loop which
is about the worst thing there is in programming.

Step expression… j++ This tells us how our variable changes as we proceed
through the loop. In this case we are incrementing j each time; however, other
possibilities are:

j-- j = j + 4 j = j * 3 etc.

For our example above, exactly when does the increment …j++ occur? Think of
the step expression being at the bottom of the loop as follows:

11-2

for (j = 3; j <= 79; . . .)

 {
 … some code …

 j++; //Just think of the j++ as being the last line of code inside the
 } //braces.

Special features of the for-loop:

The break command:
If the keyword break is executed inside a for-loop, the loop is immediately exited
(regardless of the control statement). Execution continues with the statement
immediately following the closing brace of the for-loop.

Declaring the loop variable:

It is possible to declare the loop variable in the initializing portion of the
parenthesis of a for-loop as follows:
 for (int j = 3; j <= 79; j++)
 {
 . . .
 }

In this case the scope of j is confined to the interior of the loop. If we write j in
statement outside the loop (without redeclaring it to be an int), it won’t compile.
The same is true of any other variable declared inside the loop. Its scope is limited
to the interior of the loop and is not recognized outside the loop as is illustrated in
the following code:

 for (j = 3; j <= 79; j++)
 {
 double d = 102.34;

 . . .

}
System.out.println(d); //won’t compile because of this line

No braces:

If there is only one line of code or just one basic structure (an if-structure or
another loop) inside a loop, then the braces are unnecessary. In this case it is still
correct (and highly recommended) to still have the braces…but you can leave
them off.

 for (j = 3; j <= 79; j++) is equivalent to for (j = 3; j <= 79; j++)
 sum = sum + j; { sum = sum + j; }

When the loop finishes:

It is often useful to know what the loop variable is after the loop finishes:

11-3

 for (j = 3; j <= 79; j++)
 {
 . . . some code . . .
 }
 System.out.println(j); //80

On the last iteration of the loop, j increments up to 80 and this is when the control
statement j <= 79 finally is false. Thus, the loop is exited.

Nested loops:

“Nested loops” is the term used when one loop is placed inside another as in the
following example:

for(int j = 0; j < 5; j++)
{
 System.out.println(“Outer loop”); // executes 5 times
 for(int k = 0; k < 8; k++)
 {
 System.out.println(“...Inner loop”); // executes 40 times
 }
}

The inner loop iterates eight times for each of the five iterations of the outer loop.
Therefore, the code inside the inner loop will execute 40 times.

**

Warning:

A very common mistake is to put a semicolon immediately after the parenthesis of a for-
loop as is illustrated by the following code:

 for (j =3; j <= 79; j++);
 {
 //This block of code is only executed once because of the inappropriately
 //placed semicolon above.
 . . . some code . . .
 }

11-4

Exercise for Lesson 11

In each problem below state what is printed unless directed otherwise.

1. int j = 0;
for (int g = 0; g <5; g++)

j++;
 System.out.println(j);

2. int s = 1;
for (int j = 3; j >= 0; j--)
{
 s = s + j;
}
System.out.println(s);

3. int p = 6;

int m = 20, j;
for (j = 1; j < p; j++); //Notice the semicolon on this line
{
 m = m + j * j;
}
System.out.println(m);

4. double a = 1.0;
for (int j = 0; j < 9; j++)
{
 a*=3;
}
System.out.println(j);

5. for (int iMus = 0; iMus < 10; iMus++)
{
 int b = 19 + iMus;
}

 System.out.println(b);

6. double d = 100.01;
int b = 0;
for (int iMus = 0; iMus < 10; iMus++)
 b = 19 + iMus;
 d++;
System.out.println(d);

7. Write a for-loop that will print the numbers 3, 6, 12, and 24

8. Write a for-loop that will print the numbers 24, 12, 6, 3

11-5
9. int k = 0;

for(int j = 0; j <= 10; j++)
{
 if (j = = 5)
 {
 break;
 }
 else
 {
 k++;
 }
}
System.out.println(k);

10. What is the name of the part of the parenthesis of a for-loop that terminates the loop?

11. What is the value of j for each iteration of the following loop?

int i, j;
for(i = 10; i <= 100; i = i+ 10)
 j = i / 2;

12. What is the value of r after the following statements have executed?
int r, j;
for (j = 1; j < 10; j = j * 2)
r = 2 * j;

13. What is the worst sin you can commit with a for-loop (or any loop for that matter)?

14. How many times does the following loop iterate?
for (p = 9; p <= 145; p++)
{
 . . .
}

Project… Name Reversal
Write a program that will allow a user to input his name. The prompt and input data would look
something like this:

 Please enter your name. Peter Ustinov

Using a for-loop and the String method, substring(…), produce a printout of the reversal of the
name.

For example, the name Peter Ustinov would be:

 vonitsu retep

Notice that the printout is in all lower-case. Use the String method, toLowerCase() to
accomplish this.

11-6

for-Loop… Contest Type Problems

1. What is output?

A. 0
B. 10
C. 15
D. 5
E. None of these

int sum=0;
for (int k=0; k<5; k++) {
 sum+=k;
}
System.out.println(sum);

2. What is output?

A. 66
B. 100
C. 101
D. 99
E. None of these

double kk = 3;
int j = 0;
for(j = 0; j <= 100; j++) {
 kk = kk + Math.pow(j, 2);
 ++kk;
}
System.out.println(j);

3. What is the final value of p?

A. 10
B. 4
C. 5
D. 12
E. None of these

double p = 0;
for(int m =10; m > 6; --m)
{
 if(m= =7) {
 p = p+m;
 }
 else {
 ++p;
 }
}

4. Which of the following will print the set of odd integers starting at 1 and ending at 9?

A. for(int j=0; j<=9; j++) { System.out.println(j); }
B. for(int j=1; j<10; j= j+2) { System.out.println(j); }
C. for(int j=1; j<=9; j+=1) { System.out.println(j); }
D. for(int j=1; j<=9; j+=2) { System.out.println(j); }
E. Both B and D

5. What is output?

A. 4950
B. 101
C. 100
D. Nothing, it’s an endless loop
E. None of these

double x = 0;
for(int b=0; b<101; b++)
{
 x = x + 1;
 b--;
}
System.out.println(x);

6. What is output?

A. 5 6
B. 6 6
C. 5 10
D. 5 5
E. None of these

int p, q=5;
for(p=0; p<5; p++); //notice the semicolon
 q = q+1;
System.out.println(p + “ ” + q);

11-7
7. What is output?

A. 98
B. 3939
C. 109
D. 4039
E. None of these

int j, k;
int count = 0;
for(j=0; j<4; j++)
{
 for(k = 0; k < 10; k++)
 {
 count++;
 }
}
System.out.print(count--);
System.out.println(count);

14-1
Lesson 14…..Binary, Hex, and Octal

We will examine four different number systems here,…decimal, binary, hexadecimal (hex), and
octal. In your study of these number systems it is very important to note the similarities of each.
Study these similarities carefully. This is how you will understand the new number systems.

Decimal, base 10

There are only 10 digits in this system:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Note that even though this is base 10, there is no single digit for 10. Instead we use
two of the permissible digits, 1 and 0 to make 10.

Positional value

1000 100 10 1
103 102 101 100
5 4 0 2

: Consider the decimal number 5,402.

2 * 1 = 2
0 * 10 = 0
4 * 100 = 400
5 * 1000 =

Binary, base 2

There are only 2 digits in this system:
 0, 1

Note that even though this is base 2, there is no single digit for 2. Instead we use two
of the permissible digits, 1 and 0 to make 10bin (2dec).

5000
 5402

Positional value

 8 4 2 1
 23 22 21 20
 1 1 0 1

: Consider the conversion of binary number 1101bin to decimal form.

1 * 1 = 1
0 * 2 = 0
1 * 4 = 4
1 * 8 =

 8
 13dec

Bits and Bytes: Each of the positions of 1101bin is called a bit… it’s a four-bit
number. When we have eight bits (example, 10110101bin) we call it a byte. If we say
that a computer has 256mb of memory, where mb stands for megabytes, this means it
has 256 million bytes. See Appendix Y for more on kilobytes, megabytes, and
gigabytes, etc.

14-2
Hexadecimal (hex), base 16

There are only 16 digits in this system:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 | | | | | |
 10 11 12 13 14 15

Note that even though this is base 16, there is no single digit for 16. Instead we use
two of the permissible digits, 1 and 0 to make 10hex (16dec).

Positional value

 4096 256 16 1
 163 162 161 160
 5 C 0 2

: Consider the conversion of hex number 5C02hex to decimal form.

 2 * 1 = 2
 0 * 16 = 0
12 * 256 = 3072
 5 * 4096 =

Octal, base 8

There are only 8 digits in this system:
 0, 1, 2, 3, 4, 5, 6, 7

Note that even though this is base 8, there is no single digit for 8. Instead we use two
of the permissible digits, 1 and 0 to make 10oct (8dec).

20480
 23554dec

Positional value

512 64 8 1
83 82 81 80
5 4 0 2

: Consider the conversion of octal number 5402oct to decimal form.

2 * 1 = 2
0 * 8 = 0
4 * 64 = 256
5 * 512 =

Following are examples that show how we can use these different number systems with Java.

Store a hex number:

int x = 0x4CB3; //the leading 0x indicates hex format
System.out.println(x); //19635 …Notice it automatically prints in decimal form

Store an octal number:

int x = 0734; //the leading 0 indicates octal format
System.out.println(x); //476 …Notice it automatically prints in decimal form

2560
 2818dec

14-3

Convert an integer variable to a hex String:
int x = 3901;
System.out.println(Integer.toHexString(x)); //f3dhex

 //…or Integer.toString(x, 16);

Convert an integer variable to a binary String:

int x = 3901;
System.out.println(Integer.toBinaryString(x)); // 111100111101bin
 //…or Integer.toString(x, 2);

Convert an integer variable to an octal String:
int x = 3901;
System.out.println(Integer.toOctalString(x)); //7475oct

 //…or Integer.toString(x, 8);

Notice in the last three examples above the following method was an alternate way to convert
bases:

String s = Integer.toString(i, b);

The first parameter i is of type int and b is the base to which we wish to convert. b (also
an int type) can be any base ranging from 2 to 36. Just as for hexadecimal numbers where
we use the letters A – F, the bases higher than 16 (hex) use the remaining letters of the
alphabet. For example, Integer.toString(8162289, 32) returns “7p2vh”.

Base conversion using parseInt:

It is also possible to go from some strange base (in String form) back to a decimal int
type. For example, Integer.parseInt(“3w4br”, 35) converts 3w4br35 into 5879187dec.

A technique for converting 147 from decimal to binary:

2 147 ; 2 divides into 147 73 times with a remainder of
2 73 1 ;1. 2 divides into 73, 36 times with a remainder of

 2 36 1 ;1. 2 divides into 36, 18 times with a remainder of
 2 18 0 ;0. 2 divides into 18, 9 times with a remainder of
 2 9 0 ;0. etc.
 2 4 1
 2 2 0
 2 1 0
 0 1 Now list the 1’s and 0’s from bottom to top. 10010011bin = 147dec

A technique for converting 3741 from decimal to hex:

 16 3741 ;divide 3741 by 16. It goes 233 times with a
 16 233 13 ;remainder of 13.

16 14 9
 0 14

 Now list the numbers from bottom to top. Notice, when listing the 14 we
 give its hex equivalent, E, and for 13 we will give D: E9Dhex = 3741dec

14-4
An octal multiplication example (47oct * 23oct):

 2
 47 3 * 7 = 21dec 8 divides into 21 2 times with a remainder

23 of 5. Notice the 5 and the carry of 2
 5

 1 2
 47 (3*4) + 2 = 14dec 8 divides into 14 1 time with a

23 remainder of 6
 165

 1
 47 2 * 7 = 14dec 8 divides into 14 1 time with a

23 remainder of 6
 165
 6

 11

 47 2*4 + 1 = 9dec 8 divides into 9 1 time with a
 23 remainder of 1
 165
 116 Now we are ready to add:

 1
 165
 116 .
 1345oct Notice in adding 6 + 6 we get 12. 8 divides 12 1

time, remainder 4.
Binary addition:

The rules to remember are: 0 + 0 = 0 0 + 1 = 1 1 + 1 = 0 with a carry of 1

Add the two binary numbers 110011 and 100111.

1 1 1 1
 1 1 0 0 1 1
 1 0 0 1 1 1
1 0 1 1 0 1 0

The problem we have done here: 110011bin + 100111bin = 1011010bin

is equivalent to: 51dec + 39dec = 90dec

A trick for converting binary into hex:
 Begin with the binary number 10110111010. Starting on the right side, partition this into

groups of four bits and get 101 1011 1010 To each four bit group, assign a hex digit.
 5 B A

 Thus we have 10110111010bin = 5BAhex. Similarly, partition a binary number into groups

of 3 to convert to Octal.

See Appendix D for the decimal, hex, octal, and binary equivalents of 0 – 127.

14-5

For an enrichment activity concerning a Binary File Editor, see Appendix U. There, you will
have an opportunity to specify software, search on the Internet, and publish the information you
discover…. Appendix G explains how negative numbers are handled in the binary system.

Project… Basically Speaking
Create a project called TableOfBases with class Tester. The main method should have a for loop
that cycles through the integer values 65 <= j <= 90 (These are the ASCII codes for characters A
– Z). Use the methods learned in this lesson to produce a line of this table on each pass through
the loop. Display the equivalent of the decimal number in the various bases just learned (binary,
octal, and hex) as well as the character itself:

Decimal Binary Octal Hex Character
65 1000001 101 41 A
66 1000010 102 42 B
67 1000011 103 43 C
68 1000100 104 44 D
69 1000101 105 45 E
70 1000110 106 46 F
71 1000111 107 47 G
72 1001000 110 48 H
73 1001001 111 49 I
74 1001010 112 4a J
75 1001011 113 4b K
76 1001100 114 4c L
77 1001101 115 4d M
78 1001110 116 4e N
79 1001111 117 4f O
80 1010000 120 50 P
81 1010001 121 51 Q
82 1010010 122 52 R
83 1010011 123 53 S
84 1010100 124 54 T
85 1010101 125 55 U
86 1010110 126 56 V
87 1010111 127 57 W
88 1011000 130 58 X
89 1011001 131 59 Y
90 1011010 132 5a Z

Exercise on Lesson 14
1. Convert 3C4Fhex to decimal.

2. Convert 100011bin to decimal.

3. Convert 637oct to decimal.

4. Is the following code legal? If not, why? int v = 04923;

5. Is the following code legal? If not, why? int w = 0xAAFF;

14-6
6. Convert 9A4Ehex to decimal.

7. Convert 1011011bin to decimal.

8. Convert 6437oct to decimal.

9. Write code that will store 5C3Bhex in the integer variable a.

10. Write code that will store 3365oct in the integer variable k.

11. Convert 478dec to binary.

12. Convert 5678dec to hex.

13. Convert 5678dec to octal.

14. Multiply 2C6hex times 3Fhex and give the answer in hex.

15. Add 3456oct and 745oct and give the answer in octal.

16. What is the decimal equivalent of Ahex?

17. What is the decimal equivalent of 8hex?

18. What is the base of the hex system?

19. How do you write 16dec in hex?

20. What is the base of the binary system?

21. Add these two binary numbers: 1111000 and 1001110.

22. Add these two binary numbers: 1000001 and 1100001

23. Explain the following “joke”: “There are only 10 types of people in the world…those

who understand binary and those who don’t.”

24. Suppose you have String s that represents a number that you know is expressed in a base
given by int b. Write code that will convert this into an equivalent decimal based integer
and store the result in int i.

25. Show code that will convert 9322gf33 into String s that is the equivalent in base 28.

26. Add 3FA6hex to E83Ahex and give the answer in hex.

27. Multiply 7267oct times 4645oct and give the answer in octal.

28. Add 2376oct to 567oct and give the answer in octal.

29. Multiply 3Ehex times 5Bhex and give the answer in hex.

29-1

Lesson 29…..Random Numbers

Why random?

Why would we want random numbers? What possible use could there be for the
generation of unpredictable numbers? It turns out there are plenty of applications, and
the following list suggests just a few:

1. Predictions for life expectancy …used in insurance
2. Business simulations
3. Games …gives users a different experience each time
4. Simulations for scientific research, etc.

Important methods:

The Random class (requires the import of java.util.Random) generates random numbers
and has three methods, besides the constructor, that are of interest to us. These are not
static methods, so we must first create an object:

Constructor

public Random() // Signature

 Example:

 Random rndm = new Random();

nextInt()
public int nextInt() // Signature

This yields a randomly selected integer in the range Integer.MIN_VALUE to
Integer.MAX_VALUE. (-2,147,843,648 to 2,147,843,647 as specified in
Appendix C).

Example:
int x = rndm.nextInt(); //x could be any integer from -2,147,843,648 to

 //2,147,843,647

nextInt(n)
public int nextInt(int n) // Signature
 This yields a randomly selected integer (0, 1, 2, …, n-1).

Example:
 int x = rndm.nextInt(21); //x could be any integer from 0 to 20, inclusive for both

nextDouble()

public double nextDouble() // Signature
This yields a randomly selected double from 0 (inclusive) to 1 (exclusive) and
behaves exactly as does Math.random() (discussed in Lesson 6).

Example:

 double d = rndm.nextDouble(); //generates doubles in the range 0 < d < 1

Because of the two versions of nextInt, we notice that our Random class has two methods
of the same name (but different parameters). We say the methods named nextInt are

-2

overloaded. In some contexts overloading is bad (example, overloading a truck).
However, in the software sense of overloading, it is perfectly normal and acceptable.

Typical Problems:

1. Suppose we want a range of integers from 90 to 110, inclusive for both.

First we subtract (110 – 90 = 20). Then add 1 to get 21. Now set up your code as follows
to generate the desired range of integers:

 int r = 90 + rndm.nextInt(21);

Put this last line of code in a for-loop, and you will see a range of integers from 90 to
110. Loop through 1000 times, and likely you will see every value…most will be
repeated several times.

 int r = 0, count = 0;
 Random rndm = new Random();
 for(int j = 0; j < 1000; j++) {
 r = 90 + rndm.nextInt(21);
 System.out.print(r + “ ”);

//For convenience in viewing on a console screen, the following loop
//produces a new line after 15 numbers are printed side-by-side.

 count++;
 if(count >15) {
 System.out.println(“ ”);
 count = 0;

 }
}

2. Suppose we wish to generate a continuous range of floating point numbers from 34.7838
(inclusive) to 187.056 (exclusive). How would we do this?

First, subtract (187.056 – 34.7838 = 152.2722). Now set up your code as follows
to generate the desired range.

 Random rndm = new Random();
 double r;

 r = 34.7838 + 152.2722 * rndm.nextDouble();
 // Generates continuous floating point numbers in the range
 // 34.7838 < r < 187.056

Some additional methods of the Random class:

nextBoolean() … returns a random boolean value (true or false).

nextGaussian() … returns a Gaussian (“normally”) distributed double with a mean value
of 0.0 and a standard deviation of 1.0.

29-3

Project… Generate Random Integers
As described in problem 1 above, generate 33 random integers in the inclusive range from 71 to
99.

Project… Generate Random Doubles
As described in problem 2 above, generate 27 random doubles in the inclusive range from 99.78
to 147.22.

Exercise on Lesson 30
In the following problems assume that rndm is an object created with the Random class. Assume
d is of type double and that j is of type int.

1. What range of random numbers will this generate?
j = 201 + rndm.nextInt(46);

2. What range of random numbers will this generate?
d = 11 + 82.9 * rndm.nextDouble();

3. What range of random numbers does nextDouble() generate?

4. List all numbers that rndm.nextInt(10) might generate.

5. Write code that will create an object called rd from the Random class.

6. Write code that will create a Random object and then use it to generate and print 20

floating point numbers in the continuous range 22.5 < r < 32.5

7. What import is necessary for the Random class?

8. Write code that will randomly generate numbers from the following set. Printout 10 such

numbers.
18, 19, 20, 21, 22, 23, 24, 25

9. Write code that will randomly generate and print 12 numbers from the following set.
100, 125, 150, 175

10. Write a line of code to create a Random class object even though Random wasn’t
imported.

29-4

Random Numbers… Contest Type Problems

1. Which of the following is a possible output?

A. 0
B. 36
C. 37
D. Throws an exception
E. None of these

Random rd = new Random();
System.out.println(rd.nextInt(36));

2. To simulate the result of rolling a normal 6-sided
die, what should replace <*1>

A. rdm.nextDouble(6);
B. rdm.nextInt(7);
C. 1+ rdm.nextDouble(7);
D. 1 + rdm.nextInt(6);
E. 1 + rdm.nextDouble(6)

public static int dieOutcome()
{
 Random rdm = new Random();
 int die = <*1>
 return die;
}

3. Which of the following is a possible output of
the code to the right?

A. 0
B. .9999
C. 5.0
D. 6.0
E. None of these

java.util.Random rd = new java.util.Random();
System.out.println(1+ 5 * rd.nextDouble());

4. What would be the range of possible values of
db for the following line of code?
 double db = genRndDbl(4, 1);

 A. 1 < db < 5
 B. 0 < db < 5
 C. 1 < db < 4
 D. 1 < db < 5
 E. 0 < db < 5

public static double genRndDbl(int m, int a)
{
 Random r = new Random();
 double d = a + m * r.nextDouble();
 return d;
}

5. What would be the replacement code for <*1>
to generate random numbers from the following
set?
 {20, 35, 50, 65}

A. 20 * 15 + ri.nextInt(4);
B. 20 + 15 * ri.nextInt(5);
C. 15 * 20 + ri.nextInt(4);
D. 15 + 20 * ri.nextInt(5);
E. None of these

Random ri = new Random();
int ri = <*1>

6. When a class has more than one method of the same name, this is called which of the following?

 A. overloading B. inheritance C. overriding D. polymorphism

 E. None of these

-5

7. Which of the following “tosses” a Coin object
named theCoin, and produces a true when the
toss() method yields a HEADS?

A. theCoin.toss = = HEADS
B. toss = = 0
C. theCoin.toss() = = Coin.HEADS
D. theCoin.HEADS = = HEADS
E. Both C and D

8. Assuming that the Random class is “perfect” and
generates all of the integers with equal probability,
what is the probability that toss() returns a head?

A. slightly over .5
B. slightly under .5
C. 1
D. exactly .5
E. None of these

public class Coin
{
 public Coin()
 {
 r = new Random();
 }

 public int toss()
 {
 int i = r.nextInt();
 if(i < 0)
 {
 return TAILS;
 }
 else
 {
 return HEADS;
 }
 }

 public static final int HEADS = 0;
 public static final int TAILS = 1;

 private Random r;
}

29-6

Project… Monte Carlo Technique

Imagine a giant square painted outdoors, on the ground, with a painted circle inscribed in it.
Next, image that it’s raining and that we have the ability to monitor every raindrop that hits
inside the square. Some of those raindrops will also fall inside the circle, and a few will fall in
the corners and be inside the square, but not inside the circle. Keep a tally of the raindrops that
hit inside the square (sqrCount) and those that also hit inside the circle (cirCount).

The ratio of these two counts should equal the ratio of the areas as follows: (Understanding
this statement is essential. It is the very premise of this problem.)

 sqrCount / cirCount = (Area of square) / (Area of circle)

 sqrCount / cirCount = side2 / (π * r2)

Solving for π from this equation we get

 π = cirCount * (side2) / (sqrCount * r2)

So why did we solve for π? We already know that it’s ≅ 3.14159. We simply want to illustrate
that by a simulation (raindrop positions) we can solve for various things, in this case something
we already know. The fact that we already know π just makes it that much easier to check our
answer and verify the technique.

We are going to build a class called
MonteCarlo in which the constructor will
establish the size and position of our square
and circle. Public state variables inside this
class will be h, k, and r. These are enough to
specify the position and size of our circle and
square as shown in the figure to the right.

The requirements of your MonteCarlo class a

1. The constructor should receive h, k, and
instance fields (state variables).

2. State variables h, k, and r are public doub

of the Random class. Call it rndm.

 Y

 r
 k

 h X
 Fig. 30-1

re:

r as described above and use them to set the

les. Create a private instance field as an object

29-7
3. The nextRainDrop_x() method should return a double that corresponds to a random

raindrop’s x position. The range of x values should be confined to the square shown
above. No parameters are passed to this method.

4. The nextRainDrop_y() method should return a double that corresponds to a random

raindrop’s y position. The range of y values should be confined to the square shown
above. No parameters are passed to this method.

5. The method insideCircle(double x, double y) returns a boolean. A true is returned if the

parameters x and y that are passed are either inside or on the circle.

In writing this method, you must remember that the equation of a circle is
 (x – h)2 + (y – k) 2 = r2 …where (h,k) is the center and r is the radius.

Also, the test for a point (x, y) being either inside or on a circle is
 (x – h)2 + (y – k) 2 <= r2

You will need to build a Tester class with the following features:

1. Class name, Tester

2. There is only one method, the main() method.

3. Create a MonteCarlo object called mcObj in which the center of the circle is at (5, 3)

and the radius is 2.

4. Set up a for-loop for 100 iterations:

5. Inside the loop obtain the random coordinates of a rain drop using the
nextRainDrop_x() and nextRainDrop_y() methods.

6. Using the x and y just obtained, pass them as arguments to the insideCircle() method

to decide if our “raindrop” is inside the circle. If insideCircle() returns a true then
increment cirCount.

7. Increment sqrCount on each pass through the loop.

8. After the loop, calculate and print your estimate for π according to the solution for π

on the previous page.

9. Change the number of iterations of the loop to 1000 and run the program again.
Repeat for 10,000, 100,000, and 1,000,000 iterations. The estimate for π should
improve as the number of iterations increases.

39-1

Lesson 39… Recursion

What is recursion?

Software recursion, very simply, is the process of a method calling itself. This at first
seems very baffling…somewhat like a snake swallowing its own tail. Would the snake
eventually disappear?

The classical factorial problem:

We will begin with the classical problem of finding the factorial of a number. First, let us
define what is meant by “factorial”. Three factorial is written as 3!, Four factorial is
written as 4!, etc. But what, exactly, do they mean? Actually, the meaning is quite simple
as the following demonstrates:

 3! = 3 * 2 * 1 = 6
 4! = 4 * 3 * 2 * 1 = 24

The only weird thing about factorials is that we define 0! = 1. There is nothing to
“understand” about 0! = 1. It’s a definition, so just accept it.

Here is an iterative approach to calculating 4!.
 int answer = 1;
 for(int j = 1; j <= 4; j++)
 {
 answer = answer * j;

}
System.out.println(answer); //24

Before we present the recursive way of calculating a factorial, we need to
understand one more thing about factorials. Consider 6!.

 6! = 6 * 5 * 4 * 3 * 2 * 1 = 6 * (5 * 4 * 3 * 2 * 1)

We recognize that the parenthesis could be rewritten as 5!, so 6! could be
rewritten as

 6! = 6 * (5!)

In general we can write n! = n(n –1)!. It is this formula that we will use in our
recursive code as follows:

 public static int factorial(int n)
 {
 if(n = = 1)
 { return 1; }

else
{ return n * factorial(n – 1); //notice we call factorial here }

}

Call this code with System.out.println(factorial(4)); //24

39-2

What really happens when the method calls itself? To understand this, we should pretend
there are several copies of the factorial method. If it helps, you can think of the next one
that is called as being named factorial1, and the next factorial2, etc. Actually, we need
not pretend. This is very close to what really takes place. Analyzing the problem in this
way, the last factorial method in this “chain” returns 1. The next to the last one returns 2,
the next 3, and finally 4. These are all multiplied so the answer is 1 * 2 * 3 * 4 = 24.

Short cuts:

Let’s look at some recursion examples using short cuts. For each problem, see if you can
understand the pattern of how the answer (in bold print) was obtained.

1. System.out.println(adder(7)); // 46

public static int adder(int n)
{
 if (n<=0)
 return 30;
 else
 return n + adder(n-2);
}

On the first call to adder, n is 7, and on the second call it’s 5 (7 - 2), etc. Notice
that in the return portion of the code that each n is added to the next one in the
sequence of calls to adder. Finally, when the n parameter coming into adder gets
to 0 or less, the returned value is 30. Thus, we have:

 7 + 5 + 3 + 1 + 30 = 46

2. System.out.println(nertz(5)); // 120

public static int nertz(int n)
{
 if (n = = 1)
 return 1;
 else
 return n * nertz(n-1);
}

On the first call to nertz, n is 5, and on the second call it’s 4 (obtained with 5 - 1),
etc. Notice that in the return portion of the code that each n is multiplied times
the next one in the sequence of calls to nertz. Finally, when the n parameter
coming into adder gets to 1, the returned value is 1. Thus, we have:

 5 * 4 * 3 * 2 * 1 = 120

3. System.out.println(nrd(0)); // 25

39-3

public static int nrd(int n)
{
 if (n > 6)
 return n - 3;
 else
 return n + nrd(n +1);
}

On the first call to nrd, n is 0, and on the second call it’s 1 (obtained with 0 + 1),
etc. Notice that in the return portion of the code that each n is added to the next
one in the sequence of calls to nrd. Finally, when the n parameter coming into
adder gets above 6, the returned value is n – 3 (obtained with 7 – 3 = 4). Thus,
we have:

 0 + 1 + 2 + 3 + 4 + 5 + 6 + 4 = 25

4. System.out.println(festus(0)); // 12

public static int festus(int n)
{
 if (n > 6)
 return n - 3;
 else
 {
 n = n * 2;
 return n + festus(n + 1);
 }
}

On the first call to festus, n is 0 (and is modified to 0*2 = 0), and on the second
call it’s 1 (0 + 1 = 1, but quickly modified to 1 * 2 = 2), etc. Notice that in the
return portion of the code that each modified n is added to the next one in the
sequence of calls to festus. Finally, when the n parameter coming into festus gets
above 6, the returned value is n – 3 (7 – 3 = 4). Thus, we have:

0 + 2 + 6 + 4 = 12

5. What is displayed by homer(9); ? 1,2,4,9

public static void homer(int n)
{

if (n <= 1)
 System.out.print(n);
else
{
 homer(n / 2);
 System.out.print(“,” + n);
}

}

39-4

Notice on this method that we successively pass in these values of n.
 9 4 2 1
Nothing is printed until the last time when we are down to a 1. Then we start
coming back up the calling chain and printing.

6. What is displayed by method1(7); ? 1,3,5,7

public static void method1(int n)
{

if (n <= 1)
 System.out.print(n);
else
{
 method1(n-2);
 System.out.print(“,” + n);
}

}

7. In this problem we will generate the Fibonacci sequence. This important sequence
is found in nature and begins as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

We notice that beginning with the third term, each term is the sum of the
preceding two. Recursively, we can define the sequence as follows:

 fibonacci(0) = 0
 fibonacci(1) = 1
 fibonacci(n) = fibonacci(n - 1) + fibonacci(n -2)

Using these three lines, we can write a recursive method to find the kth term of
this sequence with the call, System.out.println(fib(k)); :

 public static int fib(int n)
 {
 if (n = = 0)
 {
 return 0;
 }
 else if(n = = 1)

{
 return 1;

}
 else
 {
 return fib(n – 1) + fib(n – 2);
 }
 }

39-5

8. Let’s try one similar to #7. What is returned by pls(4); ? 85

 public static int pls(int n)
 {
 if (n = = 0)
 {
 return 5;
 }
 else if (n = = 1)
 {
 return 11;
 }
 else
 {
 return pls(n - 1) + 2 * pls(n - 2);
 }
 }

The way we approach this is to just build the sequence from the rules we see
expressed in the code. Term 0 has a value of 5 and term 1 has a value of 11.

Term number 0 1 2 3 4
Value 5 11

How will we get term 2? Well, the rule in the code says it’s the previous term plus
twice the term before that. That gives us 11 + 2*5 = 21. Continue this to obtain
the other terms.

Term number 0 1 2 3 4
Value 5 11 21 43 85

9. We are going to use these same ideas to easily work the next problem that in the

beginning just looks hopelessly complicated.

public void f(int z)
{
 if(z = = 0)

{
 System.out.print(“x”);

}
else
{
 System.out.print(“{”);

f(z-1);
System.out.print(“}”);

}
}

Let’s begin analyzing this by observing the output of f(0). It simply prints an “x”.

39-6

Term number 0 1 2 3
Value x

Now, what about f(1)? It first prints a “{” followed by f(z-1). But f(z-1) is simply
the previous term, and we already know that it’s an “x”. A “}” follows. So our 2nd
term is “{x}”.

Term number 0 1 2 3
Value x {x}

Similarly, each subsequent term is the previous term sandwiched in between “{”
and “}” and so we have:

 Term number 0 1 2 3

Value x {x} {{x}} {{{x}}}

 So, if we are asked for f(3) the answer is {{{x}}}.

10. What is returned by g(6, 2)?

public static void g(int x, int y)
{
 if (x/y != 0)
 {
 g(x/y, y);
 }
 System.out.print(x / y + 1);
}

To analyze this problem the following pairs will represent the parameters on
subsequent recursive calls to g. Under each pair is what’s printed.

6, 2 3, 2 1, 2
4 2 1

Realizing that we don’t print until we reach the end of the calling chain, we see
that 124 is printed as we “back-out” of the chain.

39-7

Exercises on Lesson 40

In each of the following recursion problems, state what’s printed.

1. System.out.println(rig(4));

 public static int rig(int n)
 {
 if ((n = = 0))
 {
 return 5;
 }

else if (n = = 1)
{
 return 8;
}

 else
 {
 return rig(n – 1) - rig(n – 2);
 }
 }

2. System.out.println(mm(6));

public static int mm(int n)
{
 if (n<=0)
 return 10;
 else
 return n + mm(n-1);
}

3. System.out.println(adrml(5));

public static int adrml(int n)
{
 if (n<=1)
 return n;
 else
 return n * adrml(n-2);
}

4. System.out.println(bud(1));

39-8

public static int bud(int n)
{
 if (n>5)
 return n - 2;
 else
 return n + bud(n +1);
}

5. System.out.println(zing(0));

public static int zing(int n)
{
 if (n > 10)
 return n - 2;
 else
 {
 n = n * 3;
 return n + zing(n + 2);
 }
}

6. crch(12);

public static void crch(int n)
{

if (n <= 0)
 System.out.print(n);
else
{
 crch(n / 3);
 System.out.print(“,” + n);
}

}

7. elvis(11);

public static void elvis(int n)
{

if (n <= 3)
 System.out.print(n + 1);
else
{
 elvis(n-3);
 System.out.print(“>>” + (n – 1));
}

}

39-9

8. sal(5);

public static int sal(int n)
{
 if (n = = 2)
 { return 100; }
 else if (n = = 3)
 { return 200; }
 else
 {
 return (2 * sal(n - 1) + sal(n - 2) + 1);
 }
}

9. puf(4);

public static void puf(int n)
{

if(n = = 1)
{ System.out.print(“x”); }
else if(n%2 = = 0) //n is even
{

System.out.print(“{”);
puf(n-1);
System.out.print(“}”);

}
 else //n is odd
 {

System.out.print(“<”);
puf(n-1);
System.out.print(“>”);

}
}

10. bc(6, 2);

public static void bc(int p, int q)
{

 if (p/q = = 0)
 {
 System.out.println(p + q + 1);
 }
else
{

System.out.println(p);
 bc(p/q, q);

}
}

39-10

Project… Fibonacci

You are to write a recursion routine to generate the kth term of a “modified” Fibonacci sequence.
Our modified sequence will be defined as follows:

modFibonacci(0) = 3
modFibonacci(1) = 5
modFibonacci(2) = 8
modFibonacci(n) = modFibonacci(n - 1) + modFibonacci(n -2) + modFibonacci(n-3)

For your convenience several terms of this sequence are:

 3 5 8 16 29 53 98 . . .

Call your new class ModFib and create a static method in it called modFibonacci.

Test your new class with the following Tester class:

import java.io.*;
import java.util.*;
public class Tester
{
 public static void main(String args[])
 {
 Scanner kbReader = new Scanner(System.in);
 System.out.print("Generate which term number? ");
 int k = kbReader.nextInt();

 System.out.println("Term #" + k + " is " + ModFib.modFibonacci(k));
 }
}

Typical runs should look like this:

Generate which term number? 5
Term #5 is 53

Generate which term number? 6
Term #6 is 98

51-1

Lesson 51….. Binary Search Tree

We will begin by showing how a binary search tree is constructed. We will construct our tree
from the following sequence of integers; 50, 56, 52, 25, 74, and 54. Each number will result in a
“node” being constructed. The nodes in the series of figures below are depicted with circles, and
the sequence of figures shows the sequence in which the nodes are added.

The rules:

As can be observed from the drawings, a new integer (n) is added by starting at the root node
(top level node) as the first “comparison node” and then using the following rules:

1. If the number we are to insert (n) is greater than the “comparison node”, move down
the tree and to the right; the first node encountered is the new “comparison node”.

2. If the number we are to insert (n) is less than or equal to the “comparison node”,
move down the tree and to the left; the first node encountered is the new “comparison
node”.

3. If, after comparing at a node position, a node does not exist in the direction in which
we try to move, then insert a new node containing the integer n at that position.

Fig 52-1 T

 Fig 52-

25

Creation

We w
fashi
them
are d

ree started with root node

 Fig 52-2 56 is added

 Fig

4 25 is added

 Fig 52-5 74 is added

50 50

56

25

74

25

52

50

56

52

50

56

Fig 5

 of the BSTNode class:
ill now create a class call BST (binary search tree) that will allow

on described above. However, we must first have a class that create
selves. What information must a node contain? For storing integers
oing in this example, each node should contain the following:

52-3 52 is added

52

50

56
52

50

2-6 54

us to a
s the
 in the

56
54

 is adde

dd nod
nodes
 nodes
74
d

es in the

, as we

51-2
1. The actual data (an integer for the example above)
2. A reference to the right-hand node immediately beneath this node (null if it doesn’t

exist)
3. A reference to the left-hand node immediately beneath this node (null if it doesn’t

exist)

We are going to call this node-creating class, BstNode. Its implementation is shown
below.

public class BstNode
{

 public BstNode(int i) //Constructor
 {

 leftNode = null;
 rightNode = null;
 intData = i;

 }

 public int intData;
 public BstNode leftNode;
 public BstNode rightNode;

}

Notice that the three state variables in this class correspond to the three numbered
requirements mentioned earlier. Also, notice that the leftNode and rightNode fields are set
to null since when a node is constructed, there are no other nodes “hanging off it” yet.

The BST class:

Next, we turn our attention to the BST class itself. In the constructor, we simply create the
root node (the highest level node).

The reader is strongly urged to look over Appendix W (Tree Definitions). There,
you will get a firm grounding in the tree-terms we have already used here and
new ones we will be using soon.

 The constructor and state variables are as follows for the BST class:

public class BST
{

 public BST(int i) //constructor
 { // Root node is instantiated at the time of creation of the tree object.
 rootNode = new BstNode(i); //create a node with the above class
 }
 …more code to come…

 BstNode rootNode;

}

The addNode method:
Now comes the most important (and most complex) method of the BST class, the
addNode method in which decisions are made as to the correct position for each new
node to be added. Here are the rules for inserting a new node after first setting the root

51-3

1. If the number we are to insert (n) is greater than the currentNode, move down the
tree and to the right; the first node encountered is the new currentNode.

2. If the number we are to insert (n) is less than or equal to the currentNode, move
down the tree and to the left; the first node encountered is the new currentNode.

3. Continuing in this same fashion, move down the tree. If, after comparing at a
node position, a node does not exist in the direction in which we try to move, then
insert a new node containing the integer n at that position.

If these rules seem familiar, they are essentially the same as those at the top of page 52-1.
Here, in this latest rendition, we become more specific with regard to the variable names
to be used in the method that implements the rules. The complete class (including the
addNode method) now reads:

public class BST
{
 public BST(int i) //constructor: Root node added at the time of creation of the tree
 {
 rootNode = new BstNode(i);
 }

 public void addNode(int i)
 {
 BstNode currentNode = rootNode;
 boolean finished = false;
 do
 {
 BstNode curLeftNode = currentNode.leftNode;
 BstNode curRightNode = currentNode.rightNode;
 int curIntData = currentNode.intData;

 if(i > curIntData)
 { //look down the right branch

 if(curRightNode == null)
 { //create a new node referenced with currentNode.rightNode
 currentNode.rightNode = new BstNode(i);
 finished = true;
 }
 else //keep looking by assigning a new current node one level down
 { currentNode = curRightNode; }

 }
 else
 { //look down the left branch

 if(curLeftNode == null)
 { //create a new node referenced with currentNode.leftNode

 currentNode.leftNode = new BstNode(i);
 finished = true;

 }
 else
 { //keep looking by assigning a new current node one level down
 currentNode = curLeftNode;

51-4

 }

 }
 }while(!finished);
 }
 BstNode rootNode;
}

It is left to the reader to examine the code in the addNode method and to convince
himself that the three numbered rules are being implemented.

A class for testing:
To test the BST class, use the following Tester class:

public class Tester
{

 public static void main(String args[])
 {
 //the first integer in the tree is used to create the object

 BST bstObj = new BST(50);
 bstObj.addNode(56);
 bstObj.addNode(52);
 bstObj.addNode(25);
 bstObj.addNode(74);
 bstObj.addNode(54);

 }
}

Prove that it really works:

The integers mentioned in the example at the beginning of this lesson are added to the
tree with this test code. But how do we really know that it is working? What we need is
some type of printout. If we add the following traverseAndPrint method to the BST class
we will see that our class does, indeed, perform as advertised.

 public void traverseAndPrint(BstNode currentNode)
 {

 System.out.print("data = " + currentNode.intData);
 //To aid in your understanding, you may want to just ignore this

 //indented portion and just print the integer. In that case, change the
 //line above to a println instead of a print.
 if(currentNode.leftNode == null)
 { System.out.print(" left = null"); }
 else
 { System.out.print(" left = " + (currentNode.leftNode).intData); }

 if(currentNode.rightNode == null)
 { System.out.print(" right = null"); }
 else
 { System.out.print(" right = " + (currentNode.rightNode).intData);}
 System.out.println("");

 if(currentNode.leftNode != null)
 traverseAndPrint(currentNode.leftNode);

51-5

 if(currentNode.rightNode != null)
 traverseAndPrint(currentNode.rightNode);

 }

This method has recursive calls to itself and will print every node in the tree. In addition
to the data stored in each node (an integer), it also prints the contents of the two nodes
“hanging off” this node.

Test this new method by adding the following code at the bottom of the main method in
the Tester class.

 //print all the nodes
 bstObj.traverseAndPrint(bstObj.rootNode);

For the data suggested in the examples on page 52-1 the output will appear as shown
below when the main method in the Tester class is executed:

data = 50 left = 25 right = 56
data = 25 left = null right = null
data = 56 left = 52 right = 74
data = 52 left = null right = 54
data = 54 left = null right = null
data = 74 left = null right = null

**

Project… BST find Method

Now we come to what a binary search tree is all about, the search. You are to create a method of
the BST class called find. Its signature is as follows:

 public boolean find(int i)

It returns a true if i is found in the binary tree and false if it’s not found. This method will use
essentially the same rules as those for the addNode method except when we come to the place
where we formerly added a node; we will exit the method and say that the search was
unsuccessful. Likewise, there is more to the comparisons. We can no longer just test to see if the
data we are searching for is greater than or less than that of the currentNode. We must now also
test for equality.

To test the find method, add the following code to the bottom of the main method in Tester.

 System.out.println(bstObj.find(74)); //This is one it will find…prints a true
 System.out.println(bstObj.find(13)); //This is one it won't find…prints a false

Why use a Binary Search Tree?

What can searching a Binary Search Tree (BST) do that we could not accomplish
searching a linear array? The BST can do it faster, much faster. The Big O value for a

51-6
reasonably balanced BST is O(log n). For an unordered array it’s O(n); however, for an
ordered array, a binary search is also of the order O(log n). So, what are the advantages of
a binary search tree over searching an ordered array (using a binary search) since their
Big O values are the same? The advantages are:

1. Using a binary search on an array, ordering is necessary after the insertion of
each new element. An alternative to this is inserting the new element in the
correct position. In either case, the time required to do this is typically
considerably more than the time required to insert a new node in a BST.

2. In an array, we must pre-dimension the array.

a. If we dimension too small, we run the risk of running out of space if more
nodes need to be added than were originally anticipated.

b. If we dimension to large, we waste memory and may degrade the
performance of the computer.

With the BST object, we dynamically create nodes as we need them in dynamic
memory. There is no need to know ahead of time how many there will eventually
be.

Anonymous objects:

Have you noticed that with the BST class, the node objects that contain our data are
not named (except for the root node)? We have to traverse the tree and each node we
encounter gives references to the two nodes “hanging off” it with leftNode and rightNode.
Recall that we had a similar situation in Lesson 49 with the singly linked list in which we
had a “chain” of nodes, each with a reference to the next. Here, each node has references
to two nodes that follow it.

Balanced Tree:

Above it was mentioned that the Big O value for searching a Binary Search Tree was
O(log n) if the tree was reasonably balanced. What do we mean by a balanced tree? Refer
b to Fig 52-6 and it can be seen that this tree is not balanced. There are more nodes to
th

If
ra
is
o

ack

e right of the root (50) than to the left. An extreme case of this is shown below.

Fig 52-

50

 we ar
ndom
 that t
f the s
7 A to

Consider the following sequence of numbers to be
added to a binary tree.

56

e ver
 data,
hat tre
earch

tally unb

 {50, 56, 74, 99}

74

y unluc
 it is no
e be s

. What

alanced “tree”

The resulting “tree” to the left is totally unbalanced.
Every new node to be added lies to the right of the
previous node. In this case (which is clearly the worst
case) the Big O value for searching the tree is O(n). If
there are n items we might very well have to do n
comparisons before finding the desired one.

99

ky, just such a tree might result when we add our nodes. With
t very likely to be as bad as Fig 52-7; however, what is more likely,

omewhat out of balance which would, of course, reduce the efficiency
 can we do to prevent this unbalance? It is beyond the scope of this

51-7
book, however, there are algorithms that can detect this and “rebalance the tree”. Nothing
comes free, and this rebalancing adds complexity to the code as well as additional
processing time.

Generalizing, Using Objects for Data:
It is possible to modify our class so that instead of just storing primitive integers we could
store objects. To do this we would replace the code everywhere we pass an int variable as
an argument, with Comparable obj .

The only catch is that the obj object that we pass in, must implement the compareTo
method. The other requirement is that the former state variable, int intData be replaced
with Comparable data. Rather than modify the BST class that we have already done, we
are going to present another class that adds Comparable type objects to nodes in a Binary
Search Tree. This class is just about the ultimate as far as brevity of code is concerned;
however it is more difficult to understand because it uses recursion.

public class BsTree
{
 public BsTree(Comparable d)
 {

 theData = d;
 leftNode = null; //This and next line could be omitted,
 rightNode = null; //they are automatically null.

 }

 public BsTree addNode(Comparable d)
 {

 if(d.compareTo(theData) > 0)
 { //d should be inserted somewhere in the branch to the right
 if(rightNode != null)
 //right node exists, go down that branch, look for place to put it
 rightNode.addNode(d);
 else
 rightNode = new BsTree(d); //Create new rightNode, store d in it
 }
 else
 { //d should be inserted somewhere in the branch to the left
 if(leftNode != null)
 //left node exists, go down that branch, look for place to put it
 leftNode.addNode(d);
 else
 leftNode = new BsTree(d); //Create a new leftNode, store d in it
 }
 return this;

 }
 private Comparable theData;
 private BsTree leftNode, rightNode;
}

It is left to the reader to create a find method comparable to those of the BST class earlier
in this lesson. We also need a traverseAndPrint method for this class. Three different
versions of traverseAndPrint will be offered below as the various types of traversals are
discussed.

51-8

Traversal types:
There are four traversal types. They are preorder, inorder, postorder, and level order traversals.
Each visits all of the nodes in the tree, but each in a different order.

Preorder traversal of a Binary Search Tree:
Order of visitation of nodes: 50, 25, 18, 7, 19, 35, 30, 37, 76,
61, 56, 68, 80, 78, 85

Fig. 52-8
Preorder traversal
follows the sequence

The following code implem
way to remember this code i
recursive calls.

 public void traverseA
 {
 System.out.p
 if(leftNode !
 if(rightNode
 }

Inorder traversal of a B
Order of visitation of nod
61, 68, 76, 78, 80, 85

The following code implem
technique is important since
this code is to note the print
calls.

public void traverseA

50

25

35 18

7 19 30

25

35 18

7 19 30
of arrows. Rule: A
node is visited before
its descendants.

ents a preorder traversal of a tree as depicted in Fig. 52-8. An easy
s to note the printing for this preorder traversal comes before the two

ndPrint() //Use with BsTree class on previous page.

rintln(theData);
= null) leftNode.traverseAndPrint();
 != null) rightNode.traverseAndPrint();

inary Search Tree:
es: 7, 18, 19, 25, 30, 35, 37, 50, 56,

Fig. 52-9
Inorder traversal
follows the sequence
of arrows. The order is
the ascending order of

e

i

76

37

61

56 68

80

78 85

50
nts
it v
ng

nd

37
a sorted list. Rule: A
node is visited
in-between its left
subtree and right
subtree. (Left visited
first.)

f

P

76

61

56 68

80

78 85

 an inorder
isits the no
or this inor

rint()

traversa
des in a
der trav
l

e

 of a
“sor
rsal

c

tree as depicted in Fig. 52-9. This
ted order.” An easy way to remember
omes in-between the two recursive

51-9
 if(leftNode != null) leftNode.traverseAndPrint();
 System.out.println(theData);
 if(rightNode != null) rightNode.traverseAndPrint();
 }

//Exchanging the first and last lines of this method results in a reverse-order traversal.

Postorder traversal of a Binary Search Tree:
Order of visitation of nodes: 7, 19, 18, 30, 37, 35, 25, 56, 68,
61, 78, 85, 80, 76, 50

Fig. 52-10
Postorder traversal
follows the sequence
of arrows. Rule: A
node is visited after
its descendants.

7 8578

8061

68

7625

3518

19 30 37 56

50

The following code implements a postorder traversal of a tree as depicted in Fig. 52-10. An easy
way to remember this code is to note the printing for this postorder traversal comes after the two
recursive calls.

 public void traverseAndPrint()
 {
 if(leftNode != null) leftNode.traverseAndPrint();
 if(rightNode != null) rightNode.traverseAndPrint();
 System.out.println(theData);
 }

Level order traversal of a Binary Search Tree:
Order of visitation of nodes: 50, 25, 76, 18, 35, 61, 80, 7, 19,
30, 37, 56, 68, 78, 85

Fig. 52-11
Level order traversal
follows the sequence
of arrows.

7 85

25 76

3518

19 30 37

61

56 68

80

78

50

The code that would implement this is a bit more involved than the others. One way to do it is to
have counters that keep up with how deep we are in the tree.

51-10
An Application of Binary Trees… Binary Expression Trees

Fig. 52-12 (6 + 8) * 2

Consider the infix expressions (6 + 8) * 2 and 5 + (3 * 4).
The expression trees to the right are a result of parsing these
expressions. As can be inferred from the drawings, the
following rules apply for an expression tree:

• Each leaf node contains a single operand.
• Each interior node contains an operator.
• The left and right subtrees of an operator node

represent subexpressions that must be evaluated
before applying the operator at the operator node.

o The levels of the nodes in the tree indicate

their relative precedence of evaluation.
o Operations at the lower levels must be done

before those above them.
o The operation at the root of the tree will be the

last to be done.

 2

We will now look at a larger expression tree and see how the inorde
traversals of the tree have special meanings with regard to the mathe

Fig. 5
tree fo
(7 - 2

 6

 /

An Inorder Traversal of the above expression tree yields the infix

A Preorder Traversal of the above expression tree yields the prefi

A Postorder Traversal of the above expression tree yields the post
Notice that the postfix form is Reverse Polish Notation (RPN), the f
stack calculator of Lesson 50.

5

Fig 52-13 5 + (3 * 4)

r, preorder, and postorder
matics of an expression.

2-14 A binary expression
r the infix expression
2
7
 9

) * ((6

form:

x form

fix fo
orm th
3

+3) / 9)
3

6

 (7 - 2)

: * -

rm: 7 2
at was
8

*

*

*

+

+

+

 * ((

7 2

 - 6
 used
4

-

6+3) / 9)

/ + 6 3 9

 3 + 9 / *
 for the

51-11

Binary Search Tree… Contest Type Problems

1. Which of the following replaces <*1> in the code
to the right to make the traverseAndPrint method
visit and print every node in a “Postorder” fashion?

A. if(leftNd != null) leftNd.traverseAndPrint();
System.out.print(info);
if(rightNd!=null) rightNd.traverseAndPrint();

B. if(leftNd != null) leftNd.traverseAndPrint();
 if(rightNd!=null) rightNd.traverseAndPrint();

System.out.print(info);

C. System.out.print(info);
 if(leftNd != null) leftNd.traverseAndPrint();
 if(rightNd!=null) rightNd.traverseAndPrint();

D. leftNd.traverseAndPrint();

rightNd.traverseandPrint();

E. None of these

2. Assume <*1> has been filled in correctly. Which
of the following creates a Bst object obj and adds 55
as a wrapper class Integer?

A. Integer J;
J = 55;
Bst obj = Bst(J);

B. Bst obj = new Bst(new Integer(55));

C. Bst obj;

obj.addNd(55);

D. Bst obj;
obj.addNd(new Integer(55));

 E. None of these

3. Assume <*1> has been filled in correctly and that
n objects are added to an object of type Bst in order
from largest to smallest. What is the Big O value for
searching this tree?

A. O(n log n)
B. O(log n)
C. O(n)
D. O(n2)
E. None of these

//Binary Search Tree
public class Bst
{
 public Bst(Comparable addValue)
 {
 info = addValue;
 }

 public Bst addNd(Comparable addValue)
 {
 int cmp = info.compareTo(addValue);

 if(cmp<0)
 {
 if(rightNd!=null)
 rightNd.addNd(addValue);
 else
 rightNd=new Bst(addValue);
 }
 else if(cmp>0)
 {
 if(leftNd!=null)
 leftNd.addNd(addValue);
 else
 leftNd=new Bst(addValue);
 }
 return this;
 }

 public void traverseAndPrint()
 {
 <*1>
 }

 private Comparable info;
 private Bst leftNd;
 private Bst rightNd;
}

51-12
4. When a Bst object is constructed, to what value
will leftNd and rightNd be initialized?

A. this
B. 0
C. null
D. Bst object
E. None of these

5. After executing the code below, what does the
resulting tree look like?

 Bst obj = new Bst(new Integer(11));
 obj.add(new Integer(6))
 obj.add(new Integer(13));

 A. ArithmeticException

 B.

 C.

 D.

E. None of these

6. What replaces <*1>
that a “Preorder” trav

A. if(leftNd != n
System.out.pr
if(rightNd!=n

B. if(leftNd != n
 if(rightNd!=n

System.out.pr

C. System.out.pr
 if(leftNd != n
 if(rightNd!=n

D. leftNd.travers

rightNd.trave

E. None of these

//Binary Search Tree
public class Bst
{
 public Bst(Comparable addValue)
 {
 info = addValue;
 }

 public Bst addNd(Comparable addValue)
 {
 int cmp = info.compareTo(addValue);

 if(cmp<0)
 {
 if(rightNd!=null)
 rightNd.addNd(addValue);
 else
 rightNd=new Bst(addValue);
 }
 else if(cmp>0) 13

11

6

 {
 if(leftNd!=null)
 leftNd.addNd(addValue);
 else

 6

11
13

 leftNd=new Bst(addValue);
 }
 return this;
 }
 6

13
11

 in the code to the right so
ersal is done?

ull) leftNd.traverseAndPrnt();
int(info);
ull)rightNd.traverseAndPrnt();

ull) leftNd.traverseAndPrnt();
ull)rightNd.traverseAndPrnt();
int(info);

int(info);
ull) leftNd.traverseAndPrnt();
ull)rightNd.traverseAndPrnt();

eAndPrnt();
rseandPrnt();

 public void transverseAndPrnt()
 {
 <*1>
 }

 private Comparable info;
 private Bst leftNd;
 private Bst rightNd;
}

51-13

7. What is a disadvantage of an unbalanced Binary Search Tree?

A. No disadvantage B. Uses excessive memory C. Limited accuracy
D. Reduced search efficiency E. None of these

8. Average case search time for a Binary Search Tree that is reasonably balanced is of what order?

A. O(n log n) B. O(n2) C. O(n) D. O(1) E. None of these

9. What positive thing(s) can be said about a completely unbalanced tree that results from adding the
following integers to a tree in the sequence shown?

 { 5, 6, 7, … 999, 1000}

A. The items are automatically in numerical order along the long sequential strand.
B. The smallest number is automatically the root node. C. The largest number is the root node.
D. Both A and B E. Both A and C

10. In what order are the nodes visited in the
tree to the left if a preorder traversal is done?

13. For the tree abov
originally added to t

 A. M, G, R, A, H,
 C. M, R, A, G, H,
 E. None of these

A

M

A. A, G, H, M, N, P, Q, R, X
B. M, G, A, H, R, P, N, Q, X R
G

C. A, H, G, N, Q, P, X, R, M
D. M, G, R, A, D, P, X, N, Q
H

E. None of these

11. In what order are the nodes visited in the

e, which of t
he binary sea

 X, P, N, Q
 X, P, N, Q

 N
Q
P

he follow
rch tree?

X

tree to the left if a postorder traversal is done?

A. A, G, H, M, N, P, Q, R, X
B. M, G, A, H, R, P, N, Q, X
C. A, H, G, N, Q, P, X, R, M
D. M, G, R, A, H, P, X, N, Q
E. None of these

12. In what order are the nodes visited in the
tree to the left if an inorder traversal is done?

A. A, G, H, M, N, P, Q, R, X
B. M, G, A, H, R, P, N, Q, X
C. A, H, G, N, Q, P, X, R, M
D. M, G, R, A, H, P, X, N, Q
E. None of these

ing is a possible order in which the nodes were

 B. M, G, R, A, H, Q, N, P, X
 D. A, G, H, M, N, P, Q, R, X

51-14

14. What mathematical infix expression is represented by the
binary expression tree to the right?

A. (4 + 3) / 7
B. 4 / (3 + 7)
C. 7 / 4 / 3 + 7
D. (4 / 3) + 7
E. None of these

15. What mathematical infix expression is represented by the
binary expression tree to the right?

A. 5 * 2 + 4
B. 5 * (2 + 4)
C. (2 * 4) + 5
D. 5 * 2 * (+4)
E. None of these

16. Which of the following is a postfix version of the following mat

 (37 - 59) * ((4 + 1) / 6)

A. * - 37 59 / + 4 1 6
B. (37 - 59) * ((4 + 1) / 6)
C. 37 59 - 4 1 + 6 / *
D. 37 - 59 * 4 + 1 / 6
E. None of these

17. What is the minimum number of levels for a binary tree with 20 nodes

 A. 20 B. 7 C. 6 D. 5 E

18. What is the maximum number of levels for a binary tree with 20 node

 A. 20 B. 7 C. 6 D. 5 E

 7

5

hemat

?

. Non

s?

. Non

2
ical ex

e of the

e of the
3

*

+

+

4

press

se

se
4

/

ion?

Nug20-1

Golden Nugget of Wisdom # 20

1. Initialization blocks are blocks of code embedded within a class, and as the name
implies, they are mostly used to initialize variables. Multiple initialization blocks are
possible as is shown in the sample class below:

public class DemoClass
{
 //Non-static initialization block
 { stateVar1 = 50; }

 //Static initialization block
 static //To manipulate static variables, use a static initialization block

{ stateVar2 = 20; }

public DemoClass() //constructor
{
 stateVar1++;
 stateVar2--;
}

… Methods and other state variables…

public int stateVar1; //If initialization blocks exist above don’t do any
public static int stateVar2; //initializing here.

}

2. Rules for initialization blocks:
• Non-static blocks run every time an object is created.
• Static blocks run just once (when the class is first loaded).
• Blocks are executed in the order in which they occur.
• Regardless of placement, code in the blocks executes before constructor code.

3. Sample usage:

DemoClass demo1 = new DemoClass();
System.out.println(demo1.stateVar1 + “ ” + demo1.stateVar2); //51 19
DemoClass demo2 = new DemoClass();
System.out.println(demo2.stateVar1 + “ ” + demo2.stateVar2); //51 18

Initialization blocks are rarely used and there really is no point in using them as in the
two sample blocks above. It would be more straightforward to just initialize these two
state variables on the bottom two lines where they are declared. So, what is the real
purpose of initialization blocks? Suppose we have a program that absolutely must run as
fast as possible; however, it has loops that require the laborious, time-consuming
calculation of something like Math.tan(Math.log(Math.sqrt(1- x* x))) for values of x
ranging from 1 to 360 in increments of 1. In this case it would be wise to iterate 360
times through a loop in an initialization block and precalculate all these values and store
in a state variable array such as double val[]. Then in the actual program, when needed,
quickly access the desired value with val[x].

Appendix G-1

Appendix G …..Two’s Complement Notation

The two’s complement notation is the protocol used to store negative numbers. Let’s consider
the integer (4 bytes) 13 in its binary form:

 00000000 00000000 00000000 00001101bin = 13dec

What could we do to make this a negative number? The way we approach this is to think about
negative 13 in this way:

 13 + (negative 13) = 0

So, our requirement will be that negative 13 be represented in such a way that when added
to 13 it will give a result of 0.

We will begin by adding the original binary form of 13 to the ones’ complement (invert, 1’s
changed to 0’s and vice versa) of 13.

 00000000 00000000 00000000 00001101
 11111111 11111111 11111111 11110010
 11111111 11111111 11111111 11111111

This is not what we want. We want all zeros; however, notice if we add 1 to this answer a
carry will “ripple” all the way through, and if we just ignore the last carry on the end, we
have our answer of 0.

11111111 11111111 11111111 11111111
 1

 100000000 00000000 00000000 00000000
 |
 Ignore this last carry

So, the way to get –13 is to invert 13 and add 1.

 00000000 00000000 00000000 00001101 (13 in binary)

 11111111 11111111 11111111 11110010 (13 inverted)

 1 (add 1)
11111111 11111111 11111111 11110011 (two’s complement form of –13)

Rules/Observations:

1. To produce the negative of a number (two’s complement form), perform the following
three steps.

a. Express the number in binary form
b. Invert the number (change 1’s to 0’s and vice versa)
c. Add 1

2. Negative numbers will always have a most significant bit (msb) value of 1.
3. Positive numbers will always have an msb value of 0.

Appendix G-2
4. This msb is known as the sign bit and does not have a positional value as do the other

bits.

As an interesting exercise, you might try the following code.

 int x = ???; // enter any number you like for ???
 System.out.println(x + (~x + 1)); //prints 0 for any value of x

 //Notice you are inverting x and adding 1 to produce
 //the negative of x.

**

We are now going to take a completely different approach to ten’s complement and see that
when extending this idea to the binary system, we would have the two’s complement.

Consider an old-fashioned car mileage indicator (odometer). If the register rotates forward, it
performs addition one mile at a time. If the register rotates backward, it performs subtraction one
mile at a time. Below is a five-digit register rotating backwards:

 00004
 00003
 00002
 00001
 00000
 99999

99998
99997

What we have done here is to work the problem 4 – 7, because we started with 4 and then rotated
backwards 7 places. The answer is, of course, –3. However, the 99997 we got is what we call the
ten’s compliment of 3. In other words, 99997 is one way to represent –3. To see that 99997
really corresponds to –3, let’s work the problem 4 + (-3) and see if we get +1.

 00004
 99997 (This corresponds to –3)
 100001 (This is the answer if we ignore the “left-most” carry.)

Similarly, a backwards rotating “binary” odometer would look like this:

 0100
 0011
 0010
 0001
 0000
 1111
 1110
 1101

Appendix G-3

Again, what we are doing here is working the problem 4 – 7, because we start with 4 and rotate
backwards 7 places. The answer is –3 and the 1101bin we get is what we call the two’s
complement of 3. To see if this really works, let’s do the problem 4 + (-3) and see if we get 1.

 0100 bin = 4 dec

 1101 bin = -3 dec

 10001 bin = 1 (ignoring the “left-most” carry)

Notice that the two’s compliment representation of –3 dec (1101 bin) is exactly what we would get
from the previous discussion where we would have inverted and added 1.

Appendix P-1

Appendix P ….. Time Allocation for Lessons and Tests

Lesson Time Comments
“First day” activities 1 day Pass out books, demonstrate how to log-on, create project folder, learn

how to launch and configure programming environment.
Lesson 1 1 day Enter the “Hello World” program into the computer and execute.
Lesson 2 1 day Illustrate each point of Lesson 2 by modifying the code of the “Hello

World” program of Lesson 1. Assign the exercise on Lesson 2 as
homework. There should be some time to work on this towards the end of
the period and time to check answers.

Lesson 3 2 days Illustrate each point of Lesson 3 by running code. Assign Exercise on
Lesson 3. Grade assignment at end of 2nd day.

Test through Lesson 3 1 day Allow the students to work on the test, take it up at the end of the class,
and let them know when them come back the next day they can make any
corrections they look up that night. Keep beginning students from
becoming discouraged from the start by making this an open-book test.

Lesson 4 2 days Have the students run many of the code examples in their IDE (integrated
development environment) Some of the problems on the exercise must be
finished as homework in order to fit this lesson into one day.

Lesson 5 1 day Run several of the code examples.
Lesson 6 1 day Run several of the code examples.
Lesson 7 1 day Do the first project together in class and assign the “Full Name” project as

a written assignment. Typical grades range from 92 to 51. Problems 5, 9,
11, 12, 2, and 25 were those most often missed. On the day after the test
go over these specific problems.

Test through Lesson 7 1 day At this point still let the students use the book for the test… try to build up
their confidence.

Lesson 8 2 days Many of the code example need to be run on the computer as they are
discussed.

Lesson 9 2 days Be sure to actually run the first two code examples.
Lesson 10 3 days Definitely run the code “menu” example.
Test through Lesson 10 1 day This test may be difficult for some. On the day before the test let the

students look over a copy of the test for about 10 minutes so there will be
no surprises on the day of the test.

Lesson 11 3 days This is the most important lesson so far. Be sure to run several of the code
examples. This is where we begin to acclimate the students to “contest
type problems”.

Lesson 12 3 days Again, run many of the code examples… very important concepts here.
After the 14 regular exercise problems are completed, give the 5 “contest
type” problems as a quiz.

Lesson 13 2 days Emphasize the techniques for storing a char into a String and vice versa.
Have students memorize the ranges of ASCII codes.

Lesson 14 2 days Use chalk board for demo of conversion techniques.
Test through Lesson 14 2 days This will be a lengthy test and it is suggested that it not be an open-book

test. Many students will need two days. Let the first day be an eye-opener
for them so they will study overnight and continue the next day.

Make-up test through
Lesson 14 (Alternate Test
through Lesson 14)

2 days In order not to discourage students who do poorly on the original test, you
might possibly want to give this 16-question re-take. Spend one day
correcting the mistakes from the original and then one day taking this new
test… The questions on this test are mostly what is likely to have been
missed on the original test.

Lesson 15 3 days Spend time on this lesson! This is the most important lesson so far. Have
students enter and test the code for the Circle class. There are 20 questions
on the exercise for this lesson. If the students do poorly on the exercise
there is a “redemptive” quiz that could be given.

Lesson 16 3 days This is a follow up to lesson 15…very important concepts here.

Appendix P-2
Test through Lesson 16 1 day This is primarily a test on objects and classes (lesson 15 and 16).
Lesson 17 3 days Students will find this much easier than the previous lessons on objects.
Lesson 18 3 days Let students know that arrays will be used in nearly all future lessons.
Lesson 19 4 days Be sure to do the programming projects.
Test through Lesson 19 2 days It is suggested that this test be split across two days. Overnight they can

study what they saw on the test and didn’t understand.
Lesson 20 2 days
Lesson 21 1 day
Lesson 22 1 day
Test through Lesson 22 2 days This is a difficult test. Let the students work on it for 30 minutes or so the

first day, take it up, let them study overnight, and then finish the second
day.

Lesson 23 4 days Plan to spend 1 day going over the material in the textbook. The second
day can be devoted to doing and explaining the exercises. The
programming project will also take a complete period if the students are
forced to do most of it themselves. The contest type problems will require
a day. Some of those problems are tricky and will require some
explanation.

Lesson 24 3 days Many lesson from this point on depend on inputting data from a file. Make
sure the students get a good foundation.

Test through Lesson 24 1 day This test is considerably shorter than the others and probably easier.
Lesson 25 3 days Honing skills with file input.
Lesson 26 1 day Actually this lesson can be done in half a period.
Lesson 27 2 days Be sure students keep the BaseClass class. They will paste code from it

into many of their future projects.
Test through Lesson 27 1 day
Lesson 28 3 days The project in this lesson will take an entire day for most students.
Lesson 29 2 days
Test through 29 1 day
Lesson 30 3 days Be sure to do the Monte Carlo project.
Lesson 31 1 day Stress the append and toString methods.
Lesson 32 3 days DeMorgan’s theorem is very important.
Lesson 33 1 day
Test through 33 1 day
Lesson 34 2 days Some important concepts are here.
Lesson 35 3 days
Test through 35 1 day
Lesson 36 3 days This can be done in three days; however, this is such an important lesson

that it might be more desirable to allocate 4 days.
Test through 36 1 day This test focuses strictly on Lesson 36, the inheritance lesson.
Lesson 37 2 days
Lesson 38 2 days
Test through 38 1 day
Lesson 39 2 days
Lesson 40 3 days This lesson on recursion is especially important.
Test through 40 1 day
Lesson 41 6 days Spend one day for each sorting type.
Test on Lesson 41 1 day
Lesson 42 1 day
Lesson 43 3 days ArrayList. Spend at least one day on the project.
Lesson 44 4 days Iterators
Test on Lesson 44 1 day
Lesson 45 3 days These concepts are very important. Be sure to do all three projects.
Test on Lesson 45 1 day
Lesson 46 2 days
Lesson 47 3 days
Test on Lesson 47 1 day
Lesson 48 2 days
Lesson 49 3 days

Appendix P-3
Lesson 50 2 days
Test on Lesson 50 1 day
Lesson 51 3 days
Lesson 52 3 days
Test on Lesson 52 1 day
Lesson 53 2 days
Lesson 54 2 days
Test on Lesson 54 1 day
Lesson 55 3 days
Lesson 56 3 days
Lesson 57 3 days
Test on Lesson 57 1 day

http://www.bluepelicanjava.com/AppendixP.htm

Appendix Q-1

Appendix Q ….. AP (A) Correlation

Not all of the following items are tested in the AP A test, but all have at least “potential
relevance” as described in the AP Java subset on the College Board web site.

Items on the A test Page numbers
int, double 2-1
+, -,*, /, ++, --, % 4-2
= =, !=, >, <, >=, <= 8-1, 9-1
&&, ||, ! 8-1
Casting (int), (double) 5-1
String concatenation 3-1
Escape sequences \”, \\, \n 3-1, C-1
System.out.print() and System.out.println() 1-1, 1-2
One-dimensional arrays 18-1—18-7
Two-dimensional arrays 35-1
if, if/else 9-1
while, do/while 12-1
for 11-1
Design new and modify existing classes 15-1—16-7
return types 15-1
public classes, private instance variables, public and
private methods

15-1—16-7

final local variables 5-1
final class, final methods 36-2, 3
static methods 19-3, 20-1
null Nugs-17
this 36-3, 36-11__36-15, 46-6
super 36-1, 3,7, 36-12—36-15
Constructors 15-1
static variables 20-1
static methods 20-1
Inheritance hierarchies 36-1—36-15
Modifying and creating subclasses 36-1—36-15
Modifying, creating, and implementing interfaces 38-1—38-8
abstract classes and abstract interfaces 38-1
equals method for objects 9-1, 16-2
= = and != for objects 16-2
Comparison of objects with Comparable.compareTo 45-1
Conversion to supertypes and subtype casts 36-4, 45-3—45-4
Package concepts, creating, importing 7-1, 19-3, I-1, M-1
Exceptions concepts; checked and unchecked 37-1—37-11
String 2-1, 3-1
Math class (abs, pow, sqrt, random) 6-1
Object 36-4
ArrayList 43-1
Wrapper Classes; Double, Integer 21-1
Sorting methods (not including Quick Sort) 19-3, 41-1—41-17

Appendix Q-2

List interface (size, add, get, set, remove) 42-1
Binary Search 51-1
Enhanced for-loop 19-5, Nug-16, 44-3
Recursion 40-1

The computer science “case study”, Grid World, is also covered on the A test. This is
thoroughly presented and explained in Blue Pelican’s Grid World product in the form of
documents, lessons, questions/answers, and videos… available at www.bluepelicanjava.com.

Appendix R-1

Appendix R… Texas TEKS Correlation, Computer Science I

Texas TEKS (Knowledge and Skills) Student Expectations Page(s)
01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

A. Demonstrate knowledge and appropriate use of
operating systems, software applications, and
communication and networking components.

S-4, U-1

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

B. Compare, contrast, and appropriately use the various
input, processing, output, and primary/secondary storage
devices.

S-5

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

C. Make decisions regarding the selection, acquisition, and
use of software taking under consideration its quality,
appropriateness, effectiveness, and efficiency.

14-4, U-1

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

D. Delineate and make necessary adjustments regarding
compatibility issues including, but not limited to, digital file
formats and cross platform connectivity.

E-2, T-2

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

E. Differentiate current programming languages, discuss
the use of the languages in other fields of study, and
demonstrate knowledge of specific programming
terminology and concepts.

V-1, V-2

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

F. Differentiate among the levels of programming
languages including machine, assembly, high-level
compiled and interpreted languages.

V-1, V-2

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

G. Demonstrate coding proficiency in a contemporary
programming language.

Lessons 1 - 48

02. Foundations. The student uses data input skills
appropriate to the task.

A. Demonstrate proficiency in the use of a variety of input
devices such as keyboard, scanner, voice/sound recorder,
mouse, touch screen, or digital video by appropriately
incorporating such components into the product.

7-1, 45-5, U-1

02. Foundations. The student uses data input skills
appropriate to the task.

B. Use digital keyboarding standards for the input of data. 1-1, 7-1

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

A. Discuss copyright laws/issues and model ethical
acquisition and use of digital information, citing sources
using established methods.

T-2

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

B. Demonstrate proper etiquette and knowledge of
acceptable use policies when using networks, especially
resources on the Internet and intranet.

T-2

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

C. Investigate measures, such as passwords or virus
detection/prevention, to protect computer systems and
databases from unauthorized use and tampering.

47-2, T-2

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

D. Discuss the impact of computer programming on the
World Wide Web (WWW) community.

36-5, V-1

04. Information acquisition. The student uses a variety of
strategies to acquire information from electronic resources,
with appropriate supervision.

A. Use local area networks (LANs) and wide area
networks (WANs), including the Internet and intranet, in
research and resource sharing.

U-1

04. Information acquisition. The student uses a variety of
strategies to acquire information from electronic resources,
with appropriate supervision.

B. Construct appropriate electronic search strategies in the
acquisition of information including keyword and Boolean
search strategies.

8-1, 8-3

05. Information acquisition. The student acquires electronic
information in a variety of formats, with appropriate
supervision.

A. Acquire information in and knowledge about electronic
formats including text, audio, video, and graphics.

14-4, E-1, E-2, E-3

Appendix R-2
05. Information acquisition. The student acquires electronic
information in a variety of formats, with appropriate
supervision.

B. Use a variety of resources, including foundation and
enrichment curricula, together with various productivity
tools to gather authentic data as a basis for individual and
group programming projects.

14-4, U-1

05. Information acquisition. The student acquires electronic
information in a variety of formats, with appropriate
supervision.

C. Design and document sequential search algorithms for
digital information storage and retrieval.

39-3, 41-2, 47-1

06. Information acquisition. The student evaluates the
acquired electronic information.

A. Determine and employ methods to evaluate the design
and functionality of the process using effective coding,
design, and test data.

7-3, 11-5, 15-8, 16-
6, 17-6, 23-5, 24-5

06. Information acquisition. The student evaluates the
acquired electronic information.

B. Implement methods for the evaluation of the
information using defined rubrics.

U-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

A. Apply problem-solving strategies such as design
specifications, modular top-down design, step-wise
refinement, or algorithm development.

27-3, 27-4, L-1, 25-
6, 30-6

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

B. Use visual organizers to design solutions such as
flowcharts or schematic drawings.

48-1, 48-2

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

C. Develop sequential and iterative algorithms and code
programs in prevailing computer languages to solve
practical problems modeled from school and community.

25-6, 26-2, 27-4,
38-7

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

D. Code using various data types. 2-1, 8-1, 10-1, 18-1,
D-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

E. Demonstrate effective use of predefined input and
output procedures for lists of computer instructions
including procedures to protect from invalid input.

37-1, 38-1, 42-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

F. Develop coding with correct and efficient use of
expressions and assignment statements including the use of
standard/user-defined functions, data structures,
operators/proper operator precedence, and
sequential/conditional/repetitive control structure.

4-1, 6-1, 8-1, 9-1,
10-1, 12-1, H-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

G. Create and use libraries of generic modular code to be
used for efficient programming.

6-1, 19-3, 21-1, 23-
1, 31-1, 37-1, 46-1,
47-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

H. Identify actual and formal parameters and use value and
reference parameters.

15-2, 15-3, 34-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

I. Use control structures such as conditional statements and
iterated, pretest, and posttest loops.

9-1, 10-1, 11-1,
12-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

J. Use sequential, conditional, selection, and repetition
execution control structures such as menu-driven programs
that branch and allow user input.

9-1, 7-1, 10-1,

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

K. Identify and use structured data types of one-
dimensional arrays, records, and text files.

18-1, 19-1, 24-1,
F-1

08. Solving problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

A. Participate with electronic communities as a learner,
initiator, contributor, and teacher/mentor.

36-5, U-1

08. Solving problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

B. Demonstrate proficiency in, appropriate use of, and
navigation of LANs and WANs for research and for sharing
of resources.

47-2, T-2, U-1

Appendix R-3
08. Solving problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

C. Extend the learning environment beyond the school
walls with digital products created to increase teaching and
learning in the foundation and enrichment curricula.

14-4, U-1

08. Solving Problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

D. Participate in relevant, meaningful activities in the
larger community and society to create electronic projects.

36-5, U-1

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

A. Design and implement procedures to track trends, set
timelines, and review/evaluate progress for continual
improvement in process and product.

39-1, 41-2, 41-4,
41-6, 41-9

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

B. Use correct programming style to enhance the
readability and functionality of the code such as spacing,
descriptive identifiers, comments, or documentation.

1-2, 2-2, 15-1

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

C. Seek and respond to advice from peers and
professionals in delineating technological tasks.

36-5, U-1

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

D. Resolve information conflicts and validate information
through accessing, researching, and comparing data.

45-1, 45-5, U-1

09. Solving Problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

E. Create technology specifications for tasks/evaluation
rubrics and demonstrate that products/product quality can
be evaluated against established criteria.

14-4, U-1

10. Communication. The student formats digital information
for appropriate and effective communication.

A. Annotate coding properly with comments, indentation,
and formatting.

1-2, 2-2, 27-3

10. Communication. The student formats digital information
for appropriate and effective communication.

B. Create interactive documents using modeling,
simulation, and hypertext.

9-3, 11-5

11. Communication. The student delivers the product
electronically in a variety of media, with appropriate
supervision.

A. Publish information in a variety of ways including, but
not limited to, printed copy and monitor displays.

14-4, U-1

12. Communication. The student uses technology
applications to facilitate evaluation of communication, both
process and product.

B. Seek and respond to advice from peers and
professionals in evaluating the product.

36-5, U-1

12. Communication. The student uses technology
applications to facilitate evaluation of communication, both
process and product.

C. Debug and solve problems using reference materials
and effective strategies.

14-4, A-1 – U-1

Index-1

Index

absorption law …………………………………………. 32-2, Nug24-1
abs …………………………………………………….. 6-1, J-1
abstract ………………………………………………... 36-2, 38-1, Nug30-1
access control modifier ………………………………... 15-2, Nug-12
accuracy ………………………………………………. 48-2
acos……………………………………………………. 6-2
ADA …………………………………………………… S-1
add …………………………………………………….. 42-1, 43-2, 43-3, 44-2, 46-1, 50-1,

Nug30-1, J-3, J-4
addAll………………………………………………….. 42-1, 46-1
addFirst ………………………………………………... 50-1, J-3
addLast ……………………………………………….... 50-1, J-3
algebra, boolean ……………………………………….. 32-1
alph order ……………………………………………… Nug-7
Altair …………………………………………………... S-3
American Standard Code for Information Interchange .. D-3
Analytical Engine ……………………………………... S-1
ancestors ………………………………………………. W-1
AND, bitwise ………………………………………….. 28-1, Nug-11
AND, Boolean ………………………………………… 8-1, 32-1, Nug22-1
anonymous objects …………………………………….. 16-2
anti-virus software …………………………………….. T-1
AP correlation …………………………………………. Q-1
append ………………………………………………… 31-1, J-4
appending to the end of a file …………………………. 26-2
Apple IIe ………………………………………………. S-4
Apple Computer ……………………………………….. S-4
applyPattern …………………………………………… Z-1
area …………………………………………………….. 7-2
argument ………………………………………………. 15-3
ArithmeticException …………………………………... 37-2, K-1
arithmetic operators …………………………………… H-1
arrayCopy ……………………………………………... 19-2, Nug-10
ArrayIndexOutOfBoundsException …………………... 18-3, K-1
ArrayList ………………………………………………. 42-1, 42-2, 43-1, 44-3, 45-5, 53-2,

53-6, 56-2
ArrayListQueue ……………………………………….. 53-6
arrays …………………………………………………... 18-1, 19-1, 34-1, 43-1, 56-2, Nug-

13, Nug-17, Nug24-1
Arrays class ……………………………………………. 19-3, 35-2, 42-2
arrays of objects ……………………………………….. 19-1
ASCII ………………………………………………….. 13-1, D-1, Nug23-1
asin …………………………………………………….. 6-2
asList …………………………………………………... 42-2
assembly language …………………………………….. V-3
atan …………………………………………………….. 6-2
assignment …………………………………………….. 4-1
association list …………………………………………. 47-1
autoboxing …………………………………………….. 21-1, 43-1, 43-3
Autoexec.bat …………………………………………... X-3
auto-unboxing …………………………………………. 21-2
automatic initialization of arrays ……………………… 18-3

Index-2

averages ……………………………………………….. 25-6, 26-2
AWACS ……………………………………………….. 56-1
Babbage, Charles ……………………………………… S-1
back of queue ………………………………………….. 53-2
backslash ………………………………………………. 3-2, A-1
backspace ……………………………………………… A-1
balanced tree …………………………………………... 52-6
BankAccount class ……………………………………. 15-7
base ……………………………………………………. 14-1, G-1
base class ……………………………………………… 36-2
BaseClass class ………………………………………... 27-3
base folder …………………………………………….. I-2, I-3
Bemer, Robert …………………………………………. D-3
Big O …………………………………………………... 39-1, 41-13, 43-3, 57-7, Nug-13,

Nug27-1
binary ………………………………………………….. 14-1, G-1,Nug-6, Nug-14
binary expression tree …………………………………. 52-10
binary file ……………………………………………… 26-2, F-1
binary file editor ………………………………………. 14-4, U-1
binary search …………………………………………... 19-3, 35-2, 39-3, 41-13, 51-1 -6
binarySearch, Arrays class …………………………….. 19-3, 51-6
binary search tree ……………………………………… 52-1
binary tree ……………………………………………... 45-8, 52-1
bin folder ………………………………………………. I-2, X-1
bits ……………………………………………………... 14-1
bitwise operators ………………………………………. 28-1, 29-1, Nug-9
block ranges (Unicode characters) …………………….. AC-2
block rems ……………………………………………... 1-2, AE-2
BlueJ …………………………………………………... 19-4, M-1, N-1, X-1
boolean ………………………………………………… 8-1, 29-2, C-1
boolean algebra ………………………………………... 32-1
boolean operators ……………………………………… H-1, Nug-17
boolean search ………………………………………… 8-3
booleanValue ………………………………………….. 21-2
boot sector virus ……………………………………….. T-1
boot sequence ………………………………………….. T-2
boxing …………………………………………………. 21-1
branch …………………………………………………. W-1
break …………………………………………………... 10-1, 11-1, 12-2, Nug-8
BreezySwing class …………………………………….. M-1
browser ………………………………………………... V-2
Bubble Sort ……………………………………………. 41-2, 41-13
bug …………………………………………………….. S-3
bunching of indices ……………………………………. 57-3
byte ……………………………………………………. 14-1, C-1
c++ …………………………………………………….. AF-2
Calendar class …………………………………………. AD-2
calling chain …………………………………………… 37-1
call stack ………………………………………………. 50-3
capacity ……………..…………………………………. 42-2, J-4
cards …………………………………………………… S-5
casting …………………………………………………. 5-1, 42-2, 43-1, 43-2, Nug-12,

Nug23-1
catch …………………………………………………… 37-3, Nug29-1

Index-3

CD ……………………………………………………... X-2
ceil ……………………………………………………... 6-1, Nug27-1, J-2
censor ………………………………………………….. 23-5
Central Processing Unit ……………………………….. S-4
chain, calling …………………………………………... 37-1, 50-3
chaining (hashing) …………………………………….. 57-5
chain (linked list) ……………………………………… 49-1
change directory (cd) ………………………………….. X-2
char ……………………………………………………. 10-2, 13-1, C-1, Nug23-1
Character class ………………………………………… 13-2, Nug22-1
charAt …………………………………………………. 17-3, 31-3, Nug-4, J-1, J-4
charValue ……………………………………………… 21-2
checked exception ……………………………………... 37-2
child node ……………………………………………… W-1
class ……………………………………………………. 15-1
class creation …………………………………………... N-1, O-1
class loader …………………………………………….. I-3
class method …………………………………………… 20-2
classpath variable ……………………………………… I-3
class variable …………………………………………... 20-2
clear ……………………………………………………. 42-1, 43-2, 43-3, 47-1, 50-1
clone …………………………………………………... 36-4, 57-7
close ………………………………………………….... 24-1, 26-1
clusters of data in hash tables …………………………. 57-4
cmd ……………………………………………………. I-2
Collections …………………………………………….. 42-2, 45-5
collisions (hashing) ……………………………………. 57-5
color palette …………………………………………… 57-1
command ………………………………………………. X-3
command line arguments ……………………………… 19-4, Nug-16
command line prompt …………………………………. I-1, X-2
comment ………………………………………………. 1-1
Compaq Computer …………………………………….. S-4
Comparable ……………………………………………. 41-13, 45-1, 51-4, 52-7
Comparator ……………………………………………. 45-3, 46-2, 47-2
compare ……………………………………………….. 45-1
compare objects ……………………………………….. 45-1
compareTo …………………………………………….. 17-1, 45-1, 51-4, 52-7, J-1
compareToIgnoreCase…………………………………. 17-1
comparison operators ………………………………….. H-1
compatability for matrix multiplication ……………….. AA-3
compile method ……………………………………….. AG-1
compiled languages …………………………………… V-3
compiling …………………………………………….... I-1, V-3, X-1, X-2
complete tree …………………………………………... 55-1, W-1
complexity analysis …………………………………… 39-1
compound operator ……………………………………. 4-1
computer languages …………………………………… 50-3, V-1
concatenation ………………………………………….. 3-1,31-1, 31-2, Nug-7
constant ………………………………………………... 5-1, 20-3, Nug-10
constructor …………………………………………….. 15-1, 15-3, Nug-10
contains ……………………………………………….. 17-3, 42-1, 43-3, 46-1, 50-1
containAll ……………………………………………... 42-1
containsKey …………………………………………… 47-1

Index-4

containsValue …………………………………………. 47-1
continue ………………………………………………... 12-2, Nug-8
control expression ……………………………………... 11-1, 12-1
conversion between number systems ………………….. 14-1, Nug-6
conversion, char to String ……………………………... 13-1
conversion, primitives to objects ……………………… 21-1
conversion, numerics to Strings ……………………….. Nug-15
conversion, String to char ……………………………... 13-1
conversion, String to double …………………………... 22-1
conversion, String to int ……………………………….. 22-1
conversion, Wrapper objects to primitives ……………. 21-2
copyright ………………………………………………. T-2
copyValueOf …………………………………………... 19-2, J-1
cos ……………………………………………………... 6-2
cosmic superclass ……………………………………… 16-2, 36-4
countTokens …………………………………………… 23-1
CPU ……………………………………………………. S-4
create class …………………………………………….. N-1, O-1
create project …………………………………………... N-1, O-1
CSV files ………………………………………………. T-2
currentTimeMillis ……………………………………... 48-2
data member …………………………………………… 15-1
date/time format ……………………………………….. AD-1, AD_2
debugging aid ………………………………………….. X-1
DecimalFormat class ………………………………….. 27-2, Z-1
declare …………………………………………………. 2-1, 18-1, Nug21-1
decrement ……………………………………………… 4-2, 4-3
decryption project ……………………………………... 17-6
default …………………………………………………. 10-1
default constructor …………………………………….. 15-4
default package ………………………………………... I-2
defer exception handling ………………………………. 37-2
delete …………………………………………………... 31-3, J-4
deleteCharAt …………………………………………... 31-3
delimiter ……………………………………………….. 17-3, 23-1, Nug-16
Dell Computer ………………………………………… S-4
DeMorgan’s Theorem …………………………………. 32-2
depth of nodes …………………………………………. W-1
dequeue ………………………………………………... 53-1, 56-2
derived class …………………………………………… 36-2
descendents ……………………………………………. W-1
dictionary ……………………………………………… 47-1
Difference Engine ……………………………………... S-1
directory ……………………………………………….. I-3, X-2
disorganized data ……………………………………… 57-2
distribution of indices (hash table) ……………………. 57-5
divisors of a number …………………………………... 48-1
DOS …………………………………………………… S-4
DOS prompt …………………………………………… 19-4, I-4, X-1
double …………………………………………………. 2-1, C-1
double quote …………………………………………… A-1
doubleValue …………………………………………… 21-2
doubly linked list ……………………………………… 50-1
do-while loop ………………………………………….. 12-1

Index-5

dynamic memory ……………………………………… 49-5
edge ……………………………………………………. W-1
electronic community …………………………………. 36-5, U-1
email …………………………………………………... T-1
email hoax ……………………………………………... T-1
encryption project ……………………………………... 17-6
end method ……………………………………………. AG-1
endless loop …………………………………………… 11-1
enhanced for-loop ……………………………………... 19-5, Nug-16, 44-3
ENIAC ………………………………………………… S-2
enqueue ………………………………………………... 53-1, 56-2
Entry …………………………………………………... 47-2, J-3
entrySet ………………………………………………... 47-1, 47-2, J-3
Environment Variable …………………………………. I-4, X-2
equality of objects ……………………………………... 16-2
equals ………………………………………………….. 9-1, 16-2, 19-3, 36-4, 42-1,57-7,J-4
equalsIgnoreCase ……………………………………… 9-1
escape sequence ……………………………………….. 3-2, A-1, Nug-8, AC-3
ethics …………………………………………………... T-2
etiquette ………………………………………………... T-2
Excel, MS ……………………………………………... T-2
Exception Project ……………………………………… 37-11
exceptions ……………………………………………... T-2
exclusive-OR, bitwise …………………………………. 28-1, Nug-3, Nug-14
exit …………………………………………………….. 27-6
Explorer, Windows ……………………………………. E-1
expression tree ………………………………………… 52-10
exends …………………………………………………. 36-1, Nug-15, AF-3
factorial ………………………………………………... 40-1
factor-pairs …………………………………………….. 48-2
Fibonacci project ……………………………………… 40-10
Fibonacci series ……………………………………….. 40-4
field width ……………………………………………... 27-2
FIFO …………………………………………………… 50-2, 53-1, 56-1, Nug-11
figure of merit (hash table) ……………………………. 57-5
File class ………………………………………………. 24-1
file input ……………………………………………….. 24-1
FileNotFoundException ……………………………….. 37-4, K-1
file virus ……………………………………………….. T-1
FileWriter class ………………………………………... 26-1
fill, Arrays class ……………………………………….. 19-3, 35-2
final ……………………………………………………. 5-1, 36-2, Nug-10, Nug29-1
finally ………………………………………………….. 37-3, Nug29-1
find …………………………………………………….. 52-5, AG-1
findInLine ……………………………………………... 17-4, J-4
findWithinHorizon …………………………………….. 17-4, J-4
flags (Formatter) ………………………………………. 27-2, AD-1
float ……………………………………………………. C-1
floating point numbers ………………………………… 2-1, C-1
floatValue ……………………………………………... 21-2
floor ……………………………………………………. 6-1, Nug27-1, J-2
floppy disk …………………………………………….. S-5, T-1
flow chart ……………………………………………… 27-5, 48-1
flushing a file buffer …………………………………... 26-2

Index-6

folder options ………………………………………….. E-1
for-each style ………………………………………….. 19-5, Nug16-1
for-loop ………………………………………………... 11-1
format ………………………………………………….. 27-1, Z-1
format specifiers and flags …………………………….. 27-2, AD-1
Formatter class ………………………………………… 27-2, AD-1
forum …………………………………………………... 36-5, U-1
front of queue ………………………………………….. 53-2
full binary tree …………………………………………. 55-1, W-1
GarbageCollector ……………………………………… 19-1
Gates, Bill ……………………………………………... S-3
Gateway Computer ……………………………………. S-4
Gb ……………………………………………………... S-5
generic class …………………………………………… AF-1
generic interface ……………………………………….. 38-5, 45-3
generics ………………………………………………... 38-5, 43-1, 47-2
get ……………………………………………………... 42-1, 43-2, 43-3, 47-2, 50-1, J-2
getCurrencyInstance …………………………………... 27-1
getFirst ………………………………………………… 50-1, J-3
getKey …………………………………………………. J-3
getLast …………………………………………………. 50-1, J-3
getNumberInstance ……………………………………. 27-1
getPercentInstance …………………………………….. 27-2
getValue ……………………………………………….. J-3
gigabyte ………………………………………………... 14-1, S-5, Y-1
GIS (Geographical Information System) ……………… CS1-9
graphical user interface, (GUI) ………………………... S-4, X-1
greedy quantifiers ……………………………………... AC-2
grep ……………………………………………………. AC-1
group …………………………………………………... AG-1
GUI ……………………………………………………. S-4, X-1
gymnastics project ……………………………………. 27-4
hacker ………………………………………………….. T-1
hard disk ……………………………………………….. S-5
hard-wiring ……………………………………………. S-2
hash code ……………………………………………… 57-5, 36-4, 57-7
hashing techniques …………………………………….. 57-4
HashMap ………………………………………………. 47-1, 57-7
HashSet ………………………………………………... 46-1, 57-7
hash table ……………………………………………… 57-2 – 57-7
hasMoreTokens ……………………………………….. 23-2
hasNext ………………………………………………... 17-5, 44-2, 46-1, J-3, J-4
hasNextDouble ………………………………………... J-4
hasNextInt ……………………………………………... J-4
hasPrevious ……………………………………………. 44-2, Nug30-1
HeapPriorityQueue ……………………………………. 56-3
HeapSort ……………………………………………..... 56-6
heap tree ……………………………………………….. W-1, 55-1, 55-1, 56-2
height of tree …………………………………………... W-1
Hello World …………………………………………… 1-1
Hewlett-Packard ………………………………………. 50-3
hex ……………………………………………………... 14-1, D-1, Nug-6, Nug-14
hoax ……………………………………………………. T-1
Hopper, Grace …………………………………………. S-3

Index-7

horizon ………………………………………………… 17-4
html ……………………………………………………. D-1, X-1, AE-1, AE-3
IBM cards ……………………………………………... S-5
IDE …………………………………………………….. I-4, N-1, O-1, X-1
identity theft …………………………………………… T-2
if statement …………………………………………….. 9-1
IllegalArgumentException …………………………….. K-1
illegal name ……………………………………………. 2-2
IllegalStateException ………………………………….. K-1
image ………………………………………………….. 57-1
implements …………………………………………….. 38-1, Nug-3, Nug-15
implementation perspective of interfaces ……………... 38-1, Nug-6
importing ………………………………………………. 7-1, 19-3, 20-4, I-1
include …………………………………………………. V-2
increment ……………………………………………… 4-2, 4-3, 42-2
indexOf ………………………………………………... 17-1, 42-1, 43-3, 50-1, Nug-17, J-1
infinite loop ……………………………………………. 11-1
infix form ……………………………………………… 50-4, 52-10
inheritance …………………………………………….. 16-2, 36-1
initialization block …………………………………….. Nug20-1
initialize ……………………………………………….. 2-1, 18-1, 18-3, Nug21-1
initializing expression …………………………………. 11-1, 12-1
initializing object arrays ………………………………. 19-1, Nug-13
initializing state variables ……………………………... 16-3
initializing variables …………………………………… 16-4
inner class ……………………………………………... 47-2, 54-1
inner interface …………………………………………. 47-1
inner loop ……………………………………………… 11-3
in-order traversal ………………………………………. 52-8, 52-10
input from file …………………………………………. 24-1
input from keyboard …………………………………... 7-1, M-1
Input/Output …………………………………………… S-4
InputStreamReader ……………………………………. M-2
insert …………………………………………………... 31-4
insertion sort …………………………………………... 41-6, 41-13
installing packages …………………………………….. M-1
instantiate ……………………………………………… 15-1, 16-2
interfaces ………………………………………………. 38-1
intersection of Sets …………………………………….. 46-1
instance fields …………………………………………. 15-1
instanceof ……………………………………………… 36-4, 38-3
int ……………………………………………………… 2-1, C-1
interface ……………………………………………….. 42-1
interior node …………………………………………… 52-10, W-1
Internet ………………………………………………… 14-4, T-1, U-1
Internet worm …………………………………………. T-1
interpreted languages ………………………………….. V-3
interrupt ……………………………………………….. 56-1
intersection of sets …………………………………….. 46-3
intValue ……………………………………………….. 21-2, J-1
I/O ……………………………………………………... S-4
IOException …………………………………………… 24-2, 37-3,4, M-2
isDigit …………………………………………………. 13-2, Nug22-1
isEmpty ………………………………………………... 42-1, 43-2, 46-1, 47-2, 50-1 56-2

Index-8

isLetter ………………………………………………… 13-2, Nug22-1, J-2
isLetterOrDigit ………………………………………… 13-2, Nug22-1, J-2
isLowerCase …………………………………………... 13-2, Nug22-1, J-2
isUpperCase …………………………………………… 13-2, Nug22-1, J-2
isWhitespace …………………………………………... 13-2, Nug22-1, J-2
iterator …………………………………………………. 42-1, 43-1, 44-1, 46-1, Nug29-1
jar files ………………………………………………… I-3, I-5
java.exe ………………………………………………... X-1
javac.exe ………………………………………………. X-1
javaDoc ………………………………………………... 45-12, X-1, AE-1
java.io ………………………………………………….. 24-1, I-1
Java Script ……………………………………………... V-2
java.text ………………………………………………... 27-1, I-1
java.util ………………………………………………... I-1
Java virtual machine …………………………………... I-3
javaw.exe ……………………………………………… X-1
JCreator ………………………………………………... 19-4, M-1, O-1, X-1
Jobs, Steve …………………………………………….. S-4
JVM …………………………………………………… I-3
kb ……………………………………………………… S-5
key …………………………………………………….. 57-1
keyboard ………………………………………………. 7-1, S-2, 17-6
keyed list ………………………………………………. 47-1
key, map ……………………………………………….. 47-1
key-punch ……………………………………………... S-5
keySet …………………………………………………. 47-2, 47-12, Nug25-1
key words ……………………………………………… A-1
kilobyte ………………………………………………... 14-1, Y-1, S-5
languages, computer …………………………………... 50-3, V-1
LAN …………………………………………………… 47-2, T-1, U-1
lastIndexOf ……………………………………………. 17-2, 42-1, 43-3, 50-1
law of absorption ……………………………………… 32-2, Nug24-1
leaf node ……………………………………………….. 52-10, W-1
legal name ……………………………………………... 2-2
length ………………………………………………….. 3-1, 18-2, 31-3, J-4
level of nodes ………………………………………….. W-1
level-order traversal …………………………………… 52-9
license agreement …………………………………….... T-2
LIFO …………………………………………………... 50-2, 53-1, Nug-11
linear probing ………………………………………….. 57-5
linear search …………………………………………… 39-3, 41-13, 51-5
line break ……………………………………………… 3-2, A-1
linked list ……………………………………………… 49-1, 50-1
LinkedList Class ………………………………………. 42-1, 42-2, 45-5,50-1,53-1,56-2,J-3
List interface …………………………………………... 42-1, 43-1
ListIterator …………………………………………….. 42-1, 43-1, 44-1, 50-1, Nug30-1
load factor (hash table) ………………………………... 57-5
local area network (LAN) ……………………………... T-1, U-1
log ……………………………………………………... 6-2, Nug-3
logical size …………………………………………….. 19-2, 43-1
long ……………………………………………………. C-1
longValue ……………………………………………… 42-2
lookingAt ……………………………………………… AG-2
lookup table …………………………………………… 57-1

Index-9

Lord Byron …………………………………………….. S-1
Lovelace, Ada …………………………………………. S-1
lower bound …………………………………………… 51-1
machine language ……………………………………... V-3
MacIntosh ……………………………………………... S-4
macro virus ……………………………………………. T-1
MalformedURLException …………………………….. K-1
map ……………………………………………………. 47-1, Nug25-1
Map.Entry ……………………………………………... 47-2, J-3
masking ………………………………………………... 28-4, Nug-5
Matcher class ………………………………………….. AG-1
matcher method AG-1
matches ………………………………………………... AC-5, AG-2
Math class ……………………………………………... 6-1, Nug27-1
matrix ………………………………………………….. 35-1, 35-5,AA-1
max ……………………………………………………. 6-1, J-2
max heap ………………………………………………. 55-1
MAX_VALUE ………………………………………... 22-2, C-1
megabyte ………………………………………………. 14-1, Y-1
menu …………………………………………………... 10-1
Merge Sort …………………………………………….. 19-3, 41-10, 41-13
message boards ………………………………………... 36-5, U-1
methods ………………………………………………... 15-1
microprocessor ………………………………………… 56-1
min …………………………………………………….. 6-1, J-2
miniaturization ………………………………………… S-4
min heap ……………………………………………….. 55-1
MIN_VALUE …………………………………………. 22-2, C-1
MITS Altair …………………………………………… S-3
mixed data types ………………………………………. 5-1
modulus ……………………………………………….. 4-1, Nug-9, Nug-11
money …………………………………………………. 27-1, Z-1
monospaced fonts ……………………………………... 55-9, AB-1
Monte Carlo technique ………………………………... 30-5
most significant bit ……………………………………. 28-2, 29-1, G-1
mouse …………………………………………………. CS1-9, S-4
msb ……………………………………………………. 28-2, 29-1, G-1
MS Excel ……………………………………………… T-2
MS Word ……………………………………………… T-2
multiple declarations …………………………………... 4-1
multiple key sorting …………………………………… 41-18
music …………………………………………………... T-2
name reversal ………………………………………….. 11-5
naming conflicts ……………………………………….. I-1
naming conventions …………………………………… 2-2, 5-2, 15-2, 35-1
nanosecond ……………………………………………. S-2
nanoTime ……………………………………………… 48-2
negation operator ……………………………………… 8-1
negative number ……………………………………….. 14-4, G-1
nested ifs ………………………………………………. 9-4
nested loops …………………………………………… 11-2
nested selection operators ……………………………... 33-1
network communications ……………………………… S-4, T-1, U-1
new line character ……………………………………... 3-2, A-1, D-1, AD-1

Index-10

next ……………………………………………………. 7-1, 17-4, 44-2, 46-1, J-3, J-4
nextBoolean……………………………………………. 30-2
nextDouble ……………………………………………. 7-1, 30-1,Nug25-1, J-4
nextGaussian …………………………………………... 30-2
nextIndex ……………………………………………… 44-2, Nug30-1
nextInt …………………………………………………. 7-1, 30-1, Nug25-1, J-4
nextLine ……………………………………………….. 7-2, J-4
nextToken ……………………………………………... 23-1
node ……………………………………………………. 49-1, 52-1
nonsensical data ……………………………………….. 57-2
non-static initialization block …………………………. Nug20-1
NOT, bitwise ………………………………………….. 28-1, Nug-9
NOT, Boolean …………………………………………. 8-1
NotePad ………………………………………………... E-2, X-1
null …………………………………………………….. Nug-8, Nug-17
NullPointerException …………………………………. 19-1, K-1
Number class AF-3
NumberFormat ………………………………………… 27-1, Nug30-1
NumberFormatException ……………………………... 22-1, 37-3, K-1
numeric variables ……………………………………… 4-1
object …………………………………………………... 15-1, 34-1
Object (cosmic super class) …………………………… 16-2, 36-4, 42-2, 51-4
object perspective of interfaces ………………………... 38-2
OCR …………………………………………………… 45-5, U-1
octal ……………………………………………………. 14-1, D-1, Nug-6, Nug-14
odometer ………………………………………………. G-2
operating system ………………………………………. S-4
operator precedence …………………………………… H-1
optical character recognition …………………………... 45-5, U-1
optimization of a program …………………………….. 48-2
OR, bitwise ……………………………………………. 28-1, Nug-11
OR, boolean …………………………………………… 8-1, 32-1, Nug22-1
order of operatrions ……………………………………. H-1
outer class ……………………………………………... 54-1
outer loop ……………………………………………… 11-3
overloaded ……………………………………………... 30-1, Nug-2
overriding ……………………………………………… 16-2, 36-3, Nug-1
overwriting …………………………………………….. 26-1,2
package ………………………………………………... I-1
Package access ………………………………………… 16-4, Nug-12
package installation …………………………………… M-1
palette ………………………………………………….. 57-1
palletized image ……………………………………….. 57-1
parallel arrays ………………………………………….. 18-2
parameter ……………………………………………… 5-2, 15-2
parent node …………………………………………….. W-1
parseDouble …………………………………………… 22-1, 25-2
parseInt ………………………………………………... 14-3, 22-1, 25-2
parsing Strings (with Scanner) ………………………… 17-3
partition ………………………………………………... 41-8
Pascal, Blaise ………………………………………….. S-1
passing an array ……………………………………….. 18-3
passing by reference …………………………………... 34-1
passing by value ……………………………………….. 34-1

Index-11

password ………………………………………………. 47-2, T-2
path length …………………………………………….. W-1
path (tree) ……………………………………………… W-1
path variable …………………………………………… X-2, I-2
pattern …………………………………………………. 27-2, Z-1
pattern, character ………………………………………. AC-1
Pattern class …………………………………………… AG-1
payload ………………………………………………… T-1
peek ……………………………………………………. 56-2
PEMDAS ……………………………………………… 4-1
percent …………………………………………………. 27-2, Z-1
physical size …………………………………………… 19-2, 43-1
PI ………………………………………………………. 6-1
pipeline ………………………………………………... 49-1
pixel …………………………………………………… S-4, 57-1
PKUNZIP ……………………………………………... T-2
plagiarize ………………………………………………. T-2
planets …………………………………………………. 10-5
pointer …………………………………………………. 49-1, 50-1
polymorphism …………………………………………. 38-4, Nug-2
pop …………………………………………………….. 50-2
POSIX character classes ………………………………. AC-2
postfix form …………………………………………… 50-4, 52-10
post-order traversal ……………………………………. 52-9,10
pow ……………………………………………………. 6-1, J-2
precedence …………………………………………….. 8-2, 29-3, H-1, Nug-17
precision ……………………………………………….. 27-3, 48-2
precomputed values …………………………………… 57-2
preconditions …………………………………………... 37-1
prefix form …………………………………………….. 52-10
pre-order traversal …………………………………… 52-8, 52-10
preserve sign …………………………………………... 29-1
previous ………………………………………………... 44-2, Nug30-1
previousIndex …………………………………………. 44-2, Nug30-1
primitive data types ……………………………………. C-1
print ……………………………………………………. 26-1
printing a list, set ………………………………………. 42-2, 46-2
println ………………………………………………….. 1-1, 26-1
printf…………………………………………………… 27-3
print server …………………………………………….. 56-1
PrintWriter class ………………………………………. 26-1
priority ………………………………………………… 56-2
priority queue ………………………………………….. 55-1, 56-1
PriorityQueue interface ………………………………... 56-2
private …………………………………………………. 16-1, 16-4, Nug-12
probing (hashing) ……………………………………… 57-6
Project… Add ‘em Up ………………………………… 17-6
Project… A Heap of Trouble ………………………….. 55-9
Project… Array of Hope ………………………………. 18-7
Project… A Taste of Hash …………………………….. 57-6
Project… BaseClass …………………………………… 27-5
Project… Basically Speaking …………………………. 14-5
Project… Big Bucks in the Bank ……………………… 43-7
Project… Big Bucks Revisited ………………………... 44-7

Index-12

Project… Binary Search, Reverse Order ……………… 51-3
Project… Binary Search with Objects ………………… 51-4
Project… BST find Method …………………………… 52-5
Project… Bubble Sort …………………………………. 41-3
Project… Cheating on Your Arithmetic Assignment …. 4-5
Project… Code Talker ………………………………… 47-9
Project… Compute This ………………………………. 6-4
Project… Concatenations Gone Wild …………………. 31-2
Project… Count ’em Right ……………………………. 18-5
Project… Divisors of a Number ………………………. 48-2
Project… Don’t Make Me Take That Final! ………….. 46-4
Project… Encryption/Decryption ……………………... 17-9
Project… Even or Odd? ……………………………….. 9-4
Project… Fibonacci …………………………………… 40-10
Project… From Me To You …………………………… 1-3
Project… Full Name …………………………………... 7-3
Project… Gas Mileage ………………………………… 16-7
Project… Generate Random Doubles………………….. 30-3
Project… Generate Random Integers………………….. 30-3
Project… Get Rid of That Plus Sign! …………………. 25-3
Project… Going in Circles …………………………….. 7-3
Project… Gymnastics …………………………………. 27-4
Project… Hashing Abraham Lincoln ………………..... 57-6
Project… HashSet/Intersection ………………………... 46-3
Project… HashSet/Union ……………………………… 46-4
Project… Histogram …………………………………... 47-10
Project… How Far To The Line? ……………………... 20-6
Project… Inner Class Inside a Method ………………... 54-2
Project… Inner Class Inside an Outer Class …………... 54-2
Project… Insertion Sort ……………………………….. 41-7
Project… insert Method for Singly Linked List ………. 49-4
Project… Keep Trying ………………………………… 37-10
Project… Linear Function …………………………….. 38-7
Project… Mapping Bank Accounts …………………… 47-5
Project… Masking Telemetry Data …………………… 28-4
Project… Matrix Multiplication ………………………. 35-5
Project… Matrix Multiplication with File Input ……… 35-6
Project… Merge Sort ………………………………….. 41-13
Project… Military Censor ……………………………... 23-5
Project… Mixed Results ………………………………. 5-2
Project… Monte Carlo Technique …………………….. 30-6
Project… Multiple Key Sorting ……………………….. 41-18
Project… Name That Celebrity ……………………….. 3-4
Project… Optimized Code for Divisors of a # ………... 48-3
Project… Overdrawn at the Bank ……………………... 15-7
Project… Pass the Gravy, Please ……………………… 34-3
Project… Printing a Heap ……………………………... 55-8
Project… Quick Sort …………………………………... 41-9
Project… Reading Files ……………………………….. 24-5
Project… Selection Sort ………………………………. 41-4
Project… Shifting Marquee …………………………… 53-6
Project… Smile for the Camera ……………………….. 56-5
Project… Sorting a String Array ……………………… 19-11
Project… Sorting BankAccount Objects Alphabetically 45-12

Index-13

Project… Sorting BankAccount Objects ……………... 45-11
Project… Sorting BankAccount Objects using a
 Comparator …………………………………

45-12

Project… Stack Calculator ……………………………. 50-2
Project… StackLL Class ………………………………. 50-2
Project… Student Averages …………………………… 25-5
Project… Student Classification ………………………. 47-11
Project… Tweaking for Speed ………………………… 29-7
Project… Two Orders for the Price of One …………… 19-11
Project… Super Optimized Code for Divisors of a # …. 48-3
Project… Weight on Other Planets ……………………. 10-6
Project… What’s My Name? ………………………….. 11-5
Project… What’s That Diameter? ……………………... 15-4
Project… Who Has Highest Priority? …………………. 56-3
Project… Who’s Next? ………………………………... 53-4
Project… Write Student Averages …………………….. 26-2
project creation ………………………………………... N-1, O-1
protected (access control modifier) ……………………. Nug-12
prototype ………………………………………………. Nug22-1
public ………………………………………………….. 15-2, 15-4, 16-4, Nug-12
publishing ……………………………………………... 14-4, U-1
pull …………………………………………………….. 50-2
punch cards ………………………………………......... S-5
push ……………………………………………………. 50-2
put ……………………………………………………... 47-2
putAll ………………………………………………….. 47-2
quadratic probing ……………………………………… 57-5
queue …………………………………………………... 50-2, 53-1, 56-1
Quick Sort ……………………………………………... 41-8, 41-13
Radio Shack …………………………………………… S-4
RAM …………………………………………………... Y-1
random ………………………………………………… 6-1, 30-1, J-2
random numbers ………………………………………. 30-1, Nug25-1
read-only (enhanced for loop) …………………………. 19-5
read-only-memory, ROM ……………………………... S-4
realizes ………………………………………………… 38-4, Nug-3
reassignment of objects ………………………………... 16-2
recursion ………………………………………………. 40-1, 41-8, 41-10, 51-4, Nug26-1
recycle …………………………………………………. T-2
reference ………………………………………………. Nug-17
reference, passing by ………………………………….. 34-1
regular expression ……………………………………... 18-4, 23-2, J-1, AC-1
reheap down …………………………………………… 55-4, 56-2
reheap up ………………………………………………. 55-3, 56-2
rem …………………………………………………….. 1-1
remainder ……………………………………………… 4-1
remarks ………………………………………………... 1-1,1-2
remove ………………………………………………… 42-1, 43-2, 43-3, 44-2, 46-1, 47-1,

50-1, Nug30-1, J-3
removeAll ……………………………………………... 42-1, 46-1
removeFirst ……………………………………………. 50-1, J-3
removing and array, object ……………………………. 19-1
removeLast ……………………………………………. 42-1, 43-2, 50-1, J-3
rename …………………………………………………. Nug30-1

Index-14

replace …………………………………………………. 17-3, Nug-16, J-2, J-4
replaceAll ……………………………………………… J-2, J-2, AC-5, AG-2
replaceFirst ……………………………………………. J-2, AC-5, AG-2
reserved words ………………………………………… A-1
restrictive, least & most for Big O …………………….. 41-13
retainAll ……………………………………………….. 42-1, 46-1
reversal ………………………………………………… 11-5
reverse …………………………………………………. J-4
reverse-order traversal ………………………………… 52-9
Reverse Polish Notation ………………………………. 50-3
RGB …………………………………………………… 57-2
ROM …………………………………………………... S-4
root …………………………………………………….. 52-2
round …………………………………………………... 6-1, Nug27-1, J-2
round-off ………………………………………………. 6-1, 27-1
RPN ……………………………………………………. 50-3
RTF files ………………………………………………. T-2
RuntimeException …………………………………….. K-1
saving text files ………………………………………... E-1
scanner ………………………………………………… 45-5, U-1
Scanner class …………………………………………... 7-1, 17-4, 24-1, J-4
scientific notation ……………………………………… 2-1
SDK …………………………………………………… I-2
selection operator ……………………………………… 33-1, Nug-9, H-2
Selection Sort ………………………………………….. 41-4, 41-13
sequential search ………………………………………. 39-3, 41-13
set ……………………………………………………… 42-1, 43-2, 43-3, 44-2, 50-1,

Nug25-1, Nug30, J-2, J-4
setCharAt ……………………………………………… 31-3, 31-5, J-4
Set interface …………………………………………… 46-1
setMaximumFractionDigits …………………………… 27-1
setMinimumFractionDigits ……………………………. 27-1
setValue ……………………………………………….. J-3
scope …………………………………………………... 11-2
shadowing ……………………………………………... 36-2
shell ……………………………………………………. 27-6
shift (left and right) ……………………………………. 29-1, Nug-9
short …………………………………………………… C-1
short circuit ……………………………………………. 29-2, Nug-15, Nug22-1
shortValue ……………………………………………... 21-2
signature ……………………………………………….. 6-1, 15-2
sign bit ………………………………………………… 28-2, 29-1, G-1
sign preservation ………………………………………. 29-1
simple String operations ………………………………. 3-1
simulation ……………………………………………... 30-1
Simultaneously extending and implementing …………. 38-4
sin ……………………………………………………… 6-2
single quotation mark …………………………………. A-1
singly linked list ……………………………………….. 49-1
size …………………………………………………….. 42-1, 43-3, 46-1, 47-2, 50-1
SIZE …………………………………………………… 22-3
skip …………………………………………………….. 17-4, J-4
snapshot ……………………………………………….. 56-5
software specifications ………………………………… 14-4, U-1

Index-15

sort …………………………………………………….. 19-3, 35-2, 41-1, 45-4, 51-6, 42-2
sort, Arrays class ………………………………………. 19-3, 25-4
sorting …………………………………………………. 41-1, 42-2
source file ……………………………………………… I-2, X-1
spam email …………………………………………….. 17-5
specifiers (Formatter) ……………………….................. 27-2, AD-1
split ……………………………………………………. 18-4, 23-2, Nug28-1, J-1, AC-3
spreadsheet …………………………………………….. T-2
sqrt …………………………………………………….. 6-1, J-2
stack …………………………………………………… 50-1 - 50-5
stack class ……………………………………………... 50-2
start method …………………………………………… AG-1
startsWith ……………………………………………... 17-3
state variables ………………………………………….. 15-1, AE-3
static …………………………………………………… 20-1, Nug30-1
static block …………………………………………….. Nug20-1
static imports …………………………………………... 20-3, 20-14
static initialization block ………………………………. Nug20-1
static methods/variables ……………………………….. 19-3, 20-1
step expression ………………………………………… 11-1, 12-1
storage methods, file …………………………………... F-1
String …………………………………………………... 2-1
StringBuffer class ……………………………………... 31-1, Nug-7, J-3, J-4
String constant pool …………………………………… 16-3
StringIndexOutOfBoundsException …………………... K-1
StringTokenizer ……………………………………….. 23-1, 25-1
StringToknizer project, censor ………………………… 23-5
student averages ……………………………………….. 25-6, 26-2
subclass ………………………………………………... 36-1,2, AF-3
subscripted variables …………………………………... 18-1, 35-1
substring ……………………………………………….. 3-1, 31-3, Nug-4, J-1, J-4
subtree …………………………………………………. 52-10, W-1
Sun Microsystems ……………………………………... 48-2, X-1, AE-1
super …………………………………………………… 36-1,-3, -7, 36-12—36-15, 37-4
superclass ……………………………………………… 36-1,2
swap …………………………………………………… 41-2
switch ………………………………………………….. 10-1
System dialog ………………………………………….. X-3
System.out.print() …………………………………….. 1-2
System.out.println() …………………………………... 1-1
switch positions ……………………………………….. 28-4
System Variable ……………………………………….. I-4, X-3
tab ……………………………………………………... A-1
table ……………………………………………………. 47-1
tan ……………………………………………………... 6-2
TEKs correlation ………………………………………. R-1
telemetry ………………………………………………. 28-4
template ………………………………………………... AF-2
ten’s complement ……………………………………… G-2
ternary conditional 33-1, H-2
Texas TEKS/TAKS correlation ……………………….. R-1
text files ……………………………………………….. 26-2, E-1, F-1
text parsing …………………………………………….. 17-4
this ……………………………………………………... 36-3, 36-11, 36-12,13,14,15, 46-6

Index-16

throw …………………………………………………... 37-1
throws …………………………………………………. 24-2, 37-2, M-1
Time Allocation for Lessons ………………………….. P-1
time/date format ……………………………………….. AD-1, AD-2
timer …………………………………………………… 48-2
time zone ………………………………………………. AD-2
toArray ………………………………………………… 42-1, 46-1, 50-1
toBinaryString …………………………………………. 22-2
toCharArray …………………………………………… 19-2, J-1
toDegrees ……………………………………………… 6-2
toHexString ……………………………………………. 22-1
token …………………………………………………... 23-1
toLowerCase …………………………………………... 3-1, 13-3, J-2
toOctalString …………………………………………... 22-1
Tools menu ……………………………………………. E-1
toRadians ……………………………………………… 6-2
toString ………………………………………………... 14-3, 19-3, 22-1, 31-1, 36-4, 47-3,

50-1, 50-6, 57-7, J-1, J-4
toUpperCase …………………………………………... 3-3, 13-3, J-2
tracectory tables ……………………………………….. S-1
traversing a binary tree ………………………………... 52-4, 52-8,9, W-1
traversing a list ………………………………………… 49-2
tree …………………………………………………….. 45-8, 52-1
TreeMap ……………………………………………….. 47-1
TreeSet ………………………………………………… 46-1
trim …………………………………………………….. 17-3
Trojan horse virus ……………………………………... T-1
TRS 80 Model III ……………………………………… S-4
truncation ……………………………………………… 4-3
truth table …………………………………………........ 8-1, 32-1,4,5
try ……………………………………………………… 37-3, Nug29-1
TurtleGraphics ………………………………………… M-1
two-dimensional arrays ………………………………... 35-1, Nug24-1
two’s complement ……………………………………... G-1
type parameter ………………………………………… 43-1, 44-3, 46-1, 47-2, AF-1
type safety ……………………………………………... 43-2, 46-1, 47-2
unary operator …………………………………………. H-1
unbalanced tree ………………………………………... 52-6
unboxing ………………………………………………. 21-2
unchecked exception …………………………………... 37-2
undo …………………………………………………… 50-3
Unicode ………………………………………………... 13-1
Unicode groups ………………………………………... AC-2
union of Sets ………………………………………… 46-1, 46-4
UnknownHostException ………………………………. K-1
UnsupportedOperationException ……………………... K-1
upper bound …………………………………………… 51-1
useDelimiter …………………………………………… 17-4, J-4
User Variable ………………………………………….. I-4, X-3
UTC …………………………………………………… 48-2, AD-2
value, lookup table …………………………………….. 57-1
Value, hash table ………………………………………. 57-3
value, map ……………………………………………... 19-2, 47-1
valueOf ………………………………………………... 19-2, 22-2, Nug-15, J-1

Index-17

value, passing by ………………………………………. 34-1
values ………………………………………………….. 47-2
variable types ………………………………………….. 2-1
Vb.net ………………………………………………….. V-2
Vector …………………………………………………. 42-1, 42-2, 45-5
virus …………………………………………………… T-1
wildcard ……………………………………………….. I-1
Windows 95, 98, NT, Millennium, 2000, XP …………. S-4
Visual Basic …………………………………………… V-2
void ……………………………………………………. 15-2
von Neuman, John …………………………………….. S-2
WAN …………………………………………………... U-1
web browser …………………………………………… V-2
weight …………………………………………………. 10-5
while-loop ……………………………………………... 12-1
whitespace ……………………………………………... 13-2, 18-4, AC-2
wide area network (WAN) …………………………….. U-1
wildcard character ……………………………………... I-1, AF-4
Windows ………………………………………………. V-2
Windows 98 …………………………………………… E-2, I-1, S-4
Windows 2000 ………………………………………… X-1
Windows Explorer …………………………………….. E-1, X-1
Windows Scripting Host ………………………………. T-2
Windows XP …………………………………………... X-1
Winzip …………………………………………………. I-5
word characters ………………………………………... 17-5
Word, MS ……………………………………………... T-2
Wordpad ………………………………………………. E-2
World War II …………………………………………... S-1
worm …………………………………………………... T-1
Wozniak, Steve ………………………………………... S-4
wrapper classes ………………………………………... 21-1, Nug-14, 43-1
writing to a text file ……………………………………. 26-1
WSH …………………………………………………... T-2
XOR …………………………………………………… 28-1, Nug23-1
XP ……………………………………………………... S-4
zip ……………………………………………………... T-2

	Cover Page
	Preface
	Table of Contents
	Lesson 1... Hello World
	Project... From Me To You

	Lesson 2... Variable Types (String, int, double)
	Lesson 3... Simple String Operations
	Project... Name that Celebrity

	Lesson 4... Using Numeric Variables
	Project... Cheating on Your Arithmetic Assignment

	Lesson 5... Mixed Data Types, Casting, and Constants
	Project... Mixed Results

	Lesson 6... Methods of the Math Class
	Project... Compute This

	Lesson 7... Input from the Keyboard
	Project... Going in Circles
	Project... What's My Name?

	Lesson 8... The boolean Type and boolean Operators
	Lesson 9... The if Statement

	Project... Even or Odd?

	Lesson 10... The switch Statement and char

	Project... Weight on Other Planets

	Lesson 11.. The for Loop

	Project... Name Reversal

	Lesson 12... The while & do-while Loops

	Lesson 13... ASCII and More on char

	Lesson 14... Binary, Hex, and Octal

	Project... Basically Speaking

	Lesson 15... Classes and Objects
	Project... What's That Diameter?
	Project... Overdrawn at the Bank

	Lesson 16... More on Classes and Objects

	Project... Gas Mileage

	Lesson 17... Advanced String Methods

	Project... Add 'em Up
	Project... Encryption / Decryption

	Lesson 18... Arrays

	Project... Count 'em Right
	Project... Array of Hope

	Lesson 19... Advanced Array Concepts

	Project... Sorting a String Array

	Project... Two Orders for the Price of One

	Lesson 20... Static Methods and State Variables

	Project... How Far to the Line?

	Lesson 21... Wrapper Classes

	Lesson 22.. Additional Methods of Wrapper Classes

	Lesson 23... Input from a Disk File
	Project... Reading Files

	Lesson 24... Processing File Input with Scanner
	Project... Get Rid of that Plus Sign
	Project... Student Averages

	Lesson 25... Writing to a Text File
	Project... Write Student Averages

	Lesson 26... Formatting (rounding off)
	Project... BaseClass (Shell)
	Project... Gymnastics

	Lesson 27... Bitwise Operators
	Project... Masking Telemetry Data

	Lesson 28... Advanced Bitwise Operations
	Project... Tweaking for Speed

	Lesson 29... Random Numbers
	Project... Generate Random Integers

	Project... Generate Random Doubles

	Project... Monte Carlo Technique

	Lesson 30... StringBuffer Class
	Project... Concatenations Gone Wild

	Lesson 31... Boolean Algebra and DeMorgan's Theorem
	Lesson 32... Selection Operator (? :)
	Lesson 33... Passing by Value and By Reference
	Project... Pass the Gravy, Please

	Lesson 34... Two-Dimensional Arrays
	Project... Matrix Multiplication

	Project... Matrix Multiplication with Input File

	Lesson 35...Inheritance
	Lesson 36... Exceptions
	Project... Keep Trying

	Lesson 37... Interfaces
	Project... Linear Function

	Lesson 38... Complexity Analysis (Big O)
	Lesson 39... Recursion
	Project... Fibonacci

	Lesson 40... Sorting Routines
	Bubble Sort

	Project... Bubble Sort

	Selection Sort

	Project... Selection Sort

	Insertion Sort

	Project... Insertion sort

	Quick Sort

	Project... Quick Sort

	Merge Sort

	Project... Merge Sort

	Project... Multiple Key Sorting

	Big O Summary

	Lesson 41... List Interface
	Lesson 42... ArrayList
	Project... Big Bucks in the Bank

	Lesson 43... Iterator / ListIterator
	Project... Big Bucks Revisited

	Lesson 44... Comparable and Comparator Interfaces
	Project... Sorting BankAccount Objects

	Project... Sorting BankAccount Objects Alphabetically
	Project... Sorting BankAccount Objects using a Compatator

	Lesson 45... Hashset / TreeSet
	Project... Hashset / Intersection

	Project... Hashset / Union

	Project... Don't Make Me Take That Final!

	Lesson 46... HashMap / TreeMap
	Project... Mapping Bank Accounts

	Project... Code Talker
	Project... Histogram
	Project... Student Classification

	Lesson 47... Flow Charts & Optimizing for Speed
	Project... Divisors of a Number

	Project... Optimized Code for Divisors of a Number

	Project... Super Optimized Code for Divisors

	Lesson 48... Singly Linked List
	Project... insert method for Singly Linked List

	Lesson 49... The LinkedList Class (doubly linked) and Stacks
	Project... StackLL Class
	Project... Stack Calculator

	Lesson 50... Binary search
	Project... Binary Search, Reverse order

	Project... Binary Search with Objects

	Lesson 51... Binary Search Tree
	Project...BST find Method

	Lesson 52... Queues
	Project... Who's Next?
	Project... Shifting Marquee

	Lesson 53... Inner Classes
	Project... Inner Class Inside a Method

	Project... Inner Class Inside an Outer Class

	Lesson 54... Heaps
	Project... Printing a Heap

	Project... A Heap of Trouble

	Lesson 55... Priority Queues
	Project... Who Has Highest Priority?

	Project... Smile for the Camera

	Lesson 57... Lookup Tables and Hashing

	Project... A Taste of Hash
	Project... Hashing Abraham Lincoln

	Case Study... Distance to a Meandering Trail
	Golden Nuggets of Wisdom

	Nugget # 1

	Nugget # 2
	Nugget # 3

	Nugget # 4

	Nugget #5
	Nugget # 6
	Nugget # 7
	Nugget # 8

	Nugget # 9

	Nugget # 10
	Nugget # 11

	Nugget # 12

	Nugget # 13

	Nugget # 14

	Nugget # 15

	Nugget # 16
	Nugget # 17

	Nugget # 18

	Nugget # 19

	Nugget # 20

	Nugget # 21
	Nugget # 22
	Nugget # 23
	Nugget # 24
	Nugget # 25
	Nugget # 26
	Nugget # 27
	Nugget # 28
	Nugget # 29
	Nugget # 30

	Appendices

	Appendix A... Key Words

	Appendix B... Escape Sequences
	Appendix C. Primitive Data Types
	Appendix D... ASCII Codes

	Appendix E... Saving Text Files

	Appendix F... Text and Binary Files Explained

	Appendix G... Two's Complement Notation

	Appendix H... Operator Precedence

	Appendix I... Creating Packages and Importing Classes

	Appendix J... Typical Contest Classes and Interfaces

	Appendix K... Exception Classes

	Appendix L... An Essay on Interfaces

	Appendix M... Input from the Keyboard

	Appendix N... Using the BlueJ Programming Environment

	Appendix O... Using the JCreator Programming Environment

	Appendix P... Time Allocation for Lessons and Tests

	Appendix Q... AP (A & AB) Correlation
	Appendix R... Texas TEKS Correaltion, Computer Science I

	Appendix S... A History of Computers

	Appendix T... Viruses

	Appendix U... Enrichment Activities

	Appendix V... Computer Languages

	Appendix W... Tree Definitions

	Appendix X... Compiling and Executing without an IDE

	Appendix Y... Bytes, Kilobytes, Megabytes, & Gigabytes

	Appendix Z... Formatting with the DecimalFormat Class
	Appendix AA... Multiplication of Matrices

	Appendix AB... Monospaced Fonts

	Appendix AC... Regular Expressions
	Appendix AD... Formatter Class Specifiers and Flags
	Appendix AE... javaDoc
	Appendix AF... Generic Classes
	Appendix AG... Pattern & Matcher classes

	Index

